skip to main content


Search for: All records

Award ID contains: 1635026

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Liquid crystal elastomers (LCEs) are of interest for applications such as soft robotics and shape‐morphing devices. Among the different actuation mechanisms, light offers advantages such as spatial and local control of actuation via the photothermal effect. However, the unwanted aggregation of the light‐absorbing nanoparticles in the LCE matrix will limit the photothermal response speed, actuation performance, and repeatability. Herein, a near‐infrared‐responsive LCE composite consisting of up to 0.20 wt% poly(ethylene glycol)‐modified gold nanorods (AuNRs) without apparent aggregation is demonstrated. The high Young's modulus, 20.3 MPa, and excellent photothermal performance render repeated and fast actuation of the films (actuation within 5 s and recovery in 2 s) when exposed to 800 nm light at an average output power of ≈1.0 W cm−2, while maintaining a large actuation strain (56%). Further, it is shown that the same sheet of AuNR/LCE film (100 µm thick) can be morphed into different shapes simply by varying the motifs of the photomasks.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Conventional approaches to mitigate fouling of membrane surfaces impart hydrophilicity to the membrane surface, which increases the water of hydration and fluidity near the surface. By contrast, we demonstrate here that tuning the membrane surface energy close to that of the dispersive component of water surface tension (21.8 mN m −1 ) can also improve the antifouling properties of the membrane. Specifically, ultrafiltration (UF) membranes were first modified using polydopamine (PDA) followed by grafting of amine-terminated polysiloxane (PSi-NH 2 ). For example, with 2 g L −1 PSi-NH 2 coating solution, the obtained coating layer contains 53% by mass fraction PSi-NH 2 and exhibits a total surface energy of 21 mN m −1 , decreasing the adsorption of bovine serum albumin by 44% compared to the unmodified membrane. When challenged with 1 g L −1 sodium alginate in a constant-flux crossflow system, the PSi-NH 2 -grafted membrane exhibits a 70% lower fouling rate than the pristine membrane at a water flux of 110 L (m 2 h) −1 and good stability when cleaned with NaOH solutions. 
    more » « less
  5. The orbital angular momentum (OAM) intrinsically carried by vortex light beams holds a promise for multidimensional high-capacity data multiplexing, meeting the ever-increasing demands for information. Development of a dynamically tunable OAM light source is a critical step in the realization of OAM modulation and multiplexing. By harnessing the properties of total momentum conservation, spin-orbit interaction, and optical non-Hermitian symmetry breaking, we demonstrate an OAM-tunable vortex microlaser, providing chiral light states of variable topological charges at a single telecommunication wavelength. The scheme of the non–Hermitian-controlled chiral light emission at room temperature can be further scaled up for simultaneous multivortex emissions in a flexible manner. Our work provides a route for the development of the next generation of multidimensional OAM-spin-wavelength division multiplexing technology. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)
  9. Photonic topological insulators provide a route for disorder-immune light transport, which holds promise for practical applications. Flexible reconfiguration of topological light pathways can enable high-density photonics routing, thus sustaining the growing demand for data capacity. By strategically interfacing non-Hermitian and topological physics, we demonstrate arbitrary, robust light steering in reconfigurable non-Hermitian junctions, in which chiral topological states can propagate at an interface of the gain and loss domains. Our non-Hermitian–controlled topological state can enable the dynamic control of robust transmission links of light inside the bulk, fully using the entire footprint of a photonic topological insulator. 
    more » « less