skip to main content


Title: Tunable topological charge vortex microlaser
The orbital angular momentum (OAM) intrinsically carried by vortex light beams holds a promise for multidimensional high-capacity data multiplexing, meeting the ever-increasing demands for information. Development of a dynamically tunable OAM light source is a critical step in the realization of OAM modulation and multiplexing. By harnessing the properties of total momentum conservation, spin-orbit interaction, and optical non-Hermitian symmetry breaking, we demonstrate an OAM-tunable vortex microlaser, providing chiral light states of variable topological charges at a single telecommunication wavelength. The scheme of the non–Hermitian-controlled chiral light emission at room temperature can be further scaled up for simultaneous multivortex emissions in a flexible manner. Our work provides a route for the development of the next generation of multidimensional OAM-spin-wavelength division multiplexing technology.  more » « less
Award ID(s):
2011411 1809518 1932803 1936276 1842612 1635026 1718177 1846766
NSF-PAR ID:
10157382
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science
Volume:
368
Issue:
6492
ISSN:
0036-8075
Page Range / eLocation ID:
760 to 763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Non-Hermitian exceptional points (EPs) represent a special type of degeneracy where not only the eigenvalues coalesce, but also the eigenstates tend to collapse on each other. Recent studies have shown that in the presence of an EP, light-matter interactions are profoundly modified, leading to a host of novel optical phenomena ranging from enhanced sensitivity to chiral light transport. As of now, however, in order to stabilize a system at the vicinity of an exceptional point, its related parameters must be carefully tuned and/or continuously controlled. To overcome this limitation, here we introduce a new family of broadband exceptional points based on unidirectional coupling, implemented by incorporating an Sshaped waveguide in a microring cavity. In active settings, the resulting unidirectionality exhibits unprecedented resilience to perturbations, thus providing a robust and tunable approach for directly generating beams with distinct orbital angular momentum (OAM). This work could open up new possibilities for manipulating OAM degrees of freedom in applications pertaining to telecommunications and quantum computing, while at the same time may expand the notions of non-Hermiticity in the orbital angular momentum space. 
    more » « less
  2. Abstract

    The generation of rapidly tunable optical vortex (OV) beams is one of the most demanding research areas of the present era as they possess orbital angular momentum (OAM) with additional degrees of freedom that can be exploited to enhance signal‐carrying capacity by using mode division multiplexing and information encoding in optical communication. Particularly, rapidly tunable OAM devices at a fixed wavelength in the telecom band stir extensive interest among researchers for both classical and quantum applications. This article demonstrates the realistic design of a Si‐integrated photonic device for rapidly tunable OAM wave generation at a 1550‐nm wavelength by using an ultra‐low‐loss phase change material (PCM) embedded with a Si‐ring resonator with angular gratings. Different OAM modes are achieved by tuning the effective refractive index using rapid electrical switching of Sb2Se3 film from amorphous to crystalline states and vice versa. The generation of OAM waves relies on a traveling wave modulation of the refractive index of the micro‐ring, which breaks the degeneracy of oppositely oriented whispering gallery modes. The proposed device is capable of producing rapidly tunable OV beams, carrying different OAM modes by using electrically controllable switching of ultra‐low‐loss PCM Sb2Se3.

     
    more » « less
  3. Light carries both spin angular momentum (SAM) and orbital angular momentum (OAM), which can be used as potential degrees of freedom for quantum information processing. Quantum emitters are ideal candidates towards on-chip control and manipulation of the full SAM–OAM state space. Here, we show coupling of a spin-polarized quantum emitter in a monolayerWSe2with the whispering gallery mode of aSi3N4ring resonator. The cavity mode carries a transverse SAM ofσ<#comment/>=±<#comment/>1in the evanescent regions, with the sign depending on the orbital power flow direction of the light. By tailoring the cavity–emitter interaction, we couple the intrinsic spin state of the quantum emitter to the SAM and propagation direction of the cavity mode, which leads to spin–orbit locking and subsequent chiral single-photon emission. Furthermore, by engineering how light is scattered from the WGM, we create a high-order Bessel beam which opens up the possibility to generate optical vortex carrying OAM states.

     
    more » « less
  4. Vigorous efforts to harness the topological properties of light have enabled a multitude of novel applications. Translating the applications of structured light to higher spatial and temporal resolutions mandates their controlled generation, manipulation, and thorough characterization in the short-wavelength regime. Here, we resort to high-order harmonic generation (HHG) in a noble gas to upconvert near-infrared (IR) vector, vortex, and vector-vortex driving beams that are tailored, respectively, in their spin angular momentum (SAM), orbital angular momentum (OAM), and simultaneously in their SAM and OAM. We show that HHG enables the controlled generation of extreme-ultraviolet (EUV) vector beams exhibiting various spatially dependent polarization distributions, or EUV vortex beams with a highly twisted phase. Moreover, we demonstrate the generation of EUV vector-vortex beams (VVB) bearing combined characteristics of vector and vortex beams. We rely on EUV wavefront sensing to unambiguously affirm the topological charge scaling of the HHG beams with the harmonic order. Interestingly, our work shows that HHG allows for a synchronous controlled manipulation of SAM and OAM. These EUV structured beams bring in the promising scenario of their applications at nanometric spatial and sub-femtosecond temporal resolutions using a table-top harmonic source. 
    more » « less
  5. A central question in free-space optical communications is how to improve the transfer of information between a transmitter and a receiver. The capacity of the communication channel can be increased by multiplexing of independent modes using either: (1) the multiple-input–multiple-output (MIMO) approach, where communication is done with modes obtained from the singular value decomposition of the transfer matrix from the transmitter array to the receiver array, or (2) the orbital angular momentum (OAM) approach, which uses vortex beams that carry angular momenta. In both cases, the number of usable modes is limited by the finite aperture of the transmitter and receiver, and the effect of the turbulent atmosphere. The goal of this paper is twofold: first, we show that the MIMO and OAM multiplexing schemes are closely related. Specifically, in the case of circular apertures, the leading singular vectors of the transfer matrix, which are useful for communication, are essentially the same as the commonly used Laguerre–Gauss vortex beams, provided these have a special radius that depends on the wavelength, the distance from the transmitter to the receiver, and the ratio of the radii of their apertures. Second, we characterize the effect of atmospheric turbulence on the communication modes using the phase screen method put in the mathematical framework of beam propagation in random media.

     
    more » « less