skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1635465

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Oceanic absorption of atmospheric carbon dioxide (CO2) is expected to slow down under increasing anthropogenic emissions; however, the driving mechanisms and rates of change remain uncertain, limiting our ability to project long‐term changes in climate. Using an Earth system simulation, we show that the uptake of anthropogenic carbon will slow in the next three centuries via reductions in surface alkalinity. Warming and associated changes in precipitation and evaporation intensify density stratification of the upper ocean, inhibiting the transport of alkaline water from the deep. The effect of these changes is amplified threefold by reduced carbonate buffering, making alkalinity a dominant control on CO2uptake on multi‐century timescales. Our simulation reveals a previously unknown alkalinity‐climate feedback loop, amplifying multi‐century warming under high emission trajectories. 
    more » « less
  2. Abstract The oceanic absorption of anthropogenic carbon dioxide (CO2) is expected to continue in the following centuries, but the processes driving these changes remain uncertain. We studied these processes in a simulation of future changes in global climate and the carbon cycle following the RCP8.5 high emission scenario. The simulation shows increasing oceanic uptake of anthropogenic CO2peaking towards the year 2080 and then slowing down but remaining significant in the period up to the year 2300. These multi‐century changes in uptake are dominated by changes in sea‐air CO2fluxes in the tropical and southern oceans. In the tropics, reductions in upwelling and vertical gradients of dissolved carbon will reduce the vertical advection of carbon‐rich thermocline waters, suppressing natural outgassing of CO2. In the Southern Ocean, the upwelling of waters with relatively low dissolved carbon keeps the surface carbon relatively low, enhancing the uptake of CO2in the next centuries. The slowdown in CO2uptake in the subsequent centuries is caused by the decrease in CO2solubility and storage capacity in the ocean due to ocean warming and changes in carbon chemistry. A collapse of the Atlantic Meridional Overturning Circulation (AMOC) predicted for the next century causes a substantial reduction in the uptake of anthropogenic CO2. In sum, predicting multi‐century changes in the global carbon cycle depends on future changes in carbon chemistry along with changes in oceanic and atmospheric circulations in the Southern and tropical oceans, together with a potential collapse of the AMOC. 
    more » « less