skip to main content


Title: Long‐Term Slowdown of Ocean Carbon Uptake by Alkalinity Dynamics
Abstract

Oceanic absorption of atmospheric carbon dioxide (CO2) is expected to slow down under increasing anthropogenic emissions; however, the driving mechanisms and rates of change remain uncertain, limiting our ability to project long‐term changes in climate. Using an Earth system simulation, we show that the uptake of anthropogenic carbon will slow in the next three centuries via reductions in surface alkalinity. Warming and associated changes in precipitation and evaporation intensify density stratification of the upper ocean, inhibiting the transport of alkaline water from the deep. The effect of these changes is amplified threefold by reduced carbonate buffering, making alkalinity a dominant control on CO2uptake on multi‐century timescales. Our simulation reveals a previously unknown alkalinity‐climate feedback loop, amplifying multi‐century warming under high emission trajectories.

 
more » « less
Award ID(s):
1635465
NSF-PAR ID:
10397063
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The oceanic absorption of anthropogenic carbon dioxide (CO2) is expected to continue in the following centuries, but the processes driving these changes remain uncertain. We studied these processes in a simulation of future changes in global climate and the carbon cycle following the RCP8.5 high emission scenario. The simulation shows increasing oceanic uptake of anthropogenic CO2peaking towards the year 2080 and then slowing down but remaining significant in the period up to the year 2300. These multi‐century changes in uptake are dominated by changes in sea‐air CO2fluxes in the tropical and southern oceans. In the tropics, reductions in upwelling and vertical gradients of dissolved carbon will reduce the vertical advection of carbon‐rich thermocline waters, suppressing natural outgassing of CO2. In the Southern Ocean, the upwelling of waters with relatively low dissolved carbon keeps the surface carbon relatively low, enhancing the uptake of CO2in the next centuries. The slowdown in CO2uptake in the subsequent centuries is caused by the decrease in CO2solubility and storage capacity in the ocean due to ocean warming and changes in carbon chemistry. A collapse of the Atlantic Meridional Overturning Circulation (AMOC) predicted for the next century causes a substantial reduction in the uptake of anthropogenic CO2. In sum, predicting multi‐century changes in the global carbon cycle depends on future changes in carbon chemistry along with changes in oceanic and atmospheric circulations in the Southern and tropical oceans, together with a potential collapse of the AMOC.

     
    more » « less
  2. Abstract

    The deep ocean releases large amounts of old, pre‐industrial carbon dioxide (CO2) to the atmosphere through upwelling in the Southern Ocean, which counters the marine carbon uptake occurring elsewhere. This Southern Ocean CO2release is relevant to the global climate because its changes could alter atmospheric CO2levels on long time scales, and also affects the present‐day potential of the Southern Ocean to take up anthropogenic CO2. Here, year‐round profiling float measurements show that this CO2release arises from a zonal band of upwelling waters between the Subantarctic Front and wintertime sea‐ice edge. This band of high CO2subsurface water coincides with the outcropping of the 27.8 kg m−3isoneutral density surface that characterizes Indo‐Pacific Deep Water (IPDW). It has a potential partial pressure of CO2exceeding current atmospheric CO2levels (∆PCO2) by 175 ± 32 μatm. Ship‐based measurements reveal that IPDW exhibits a distinct ∆PCO2maximum in the ocean, which is set by remineralization of organic carbon and originates from the northern Pacific and Indian Ocean basins. Below this IPDW layer, the carbon content increases downwards, whereas ∆PCO2decreases. Most of this vertical ∆PCO2decline results from decreasing temperatures and increasing alkalinity due to an increased fraction of calcium carbonate dissolution. These two factors limit the CO2outgassing from the high‐carbon content deep waters on more southerly surface outcrops. Our results imply that the response of Southern Ocean CO2fluxes to possible future changes in upwelling are sensitive to the subsurface carbon chemistry set by the vertical remineralization and dissolution profiles.

     
    more » « less
  3. Abstract

    Anthropogenic nitrogen deposition is widely considered to increase CO2sequestration by land plants on a global scale. Here, we demonstrate that bedrock nitrogen weathering contributes significantly more to nitrogen‐carbon interactions than anthropogenic nitrogen deposition. This working hypothesis is based on the introduction of empirical results into a global biogeochemical simulation model over the time period of the mid‐1800s to the end of the 21st century. Our findings suggest that rock nitrogen inputs have contributed roughly 2–11 times more to plant CO2capture than nitrogen deposition inputs since pre‐industrial times. Climate change projections based on RCP 8.5 show that rock nitrogen inputs and biological nitrogen fixation contribute 2–5 times more to terrestrial carbon uptake than anthropogenic nitrogen deposition though year 2101. Future responses of rock N inputs on plant CO2capture rates are more signficant at higher latitudes and in mountainous environments, where geological and climate factors promote higher rock weathering rates. The enhancement of plant CO2uptake via rock nitrogen weathering partially resolves nitrogen‐carbon discrepancies in Earth system models and offers an alternative explanation for lack of progressive nitrogen limitation in the terrestrial biosphere. We conclude that natural N inputs impart major control over terrestrial CO2sequestration in Earth’s ecosystems.

     
    more » « less
  4. Abstract

    Ocean acidification due to anthropogenic CO2emission reduces ocean pH and carbonate saturation, with the projection that marine calcifiers and associated ecosystems will be negatively affected in the future. On longer time scale, however, recent studies of deep‐sea carbonate sediments suggest significantly increased carbonate production and burial in the open ocean during the warm Middle Miocene. Here, we present new model simulations in comparison to published Miocene carbonate accumulation rates to show that global biogenic carbonate production in the pelagic environment was approximately doubled relative to present‐day values when elevated atmosphericpCO2led to substantial global warming ∼13–15 million years ago. Our analysis also finds that although high carbonate production was associated with high dissolution in the deep‐sea, net pelagic carbonate burial was approximately 30%–45% higher than modern. At the steady state of the long‐term carbon cycle, this requires an equivalent increase in riverine carbonate alkalinity influx during the Middle Miocene, attributable to enhanced chemical weathering under a warmer climate. Elevated biogenic carbonate production resulted in a Miocene ocean that had carbon (dissolved inorganic carbon) and alkalinity (total alkalinity) inventories similar to modern values but was poorly buffered and less saturated in both the surface and the deep ocean relative to modern.

     
    more » « less
  5. Abstract

    As human activities increase the atmospheric concentration of carbon dioxide (CO2), the oceans are known to absorb a significant portion. The Arctic Ocean has long been considered to have enormous potential to sequester anthropogenic CO2, and mitigate emissions. The frigid waters make CO2more soluble, and as sea ice melts, greater surface area is exposed to absorb CO2. However, sparse data have made quantifying the amount of anthropogenic CO2in the Arctic difficult, stimulating much debate over the basin's contribution to CO2sequestration from the atmosphere. Using three separate cruises in 1994, 2005, and 2015 in the Canada and Makarov basins, we analyze the decadal variability in anthropogenic CO2uptake in the central western Arctic. Here we show, from direct carbon system measurements spanning two decades, that despite increased atmospheric CO2, total dissolved inorganic carbon has actually decreased, with minimal anthropogenic CO2uptake. The reduction in dissolved CO2results from a dilution of total alkalinity by increased freshwater supply, particularly river water. Changes in the freshwater budget of the western Arctic override its uptake potential, resulting in a weak sink, or possibly source of CO2.

     
    more » « less