skip to main content


Search for: All records

Award ID contains: 1636356

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Embedding percolating networks of nanoparticles (NPs) within polymers is a promising approach for mechanically reinforcing polymers and for introducing novel electronic, transport, and catalytic properties into otherwise inert polymers. While such networks may be obtained through kinetic assembly of unary system of NPs, the ensuing structures exhibit limited morphologies. Here, we investigate the possibility of increasing the diversity of NP networks through kinetic assembly of multiple species of NPs. Using lattice Monte Carlo simulations we show that networks obtained from co-assembly of two NP species of different sizes exhibit significantly more diverse morphology than those assembled from a single species. In particular, we achieved considerable variations in the particle spatial distribution, proportions of intra- and interspecies contacts, fractal dimension, and pore sizes of the networks by simply modulating the stoichiometry of the two species and their intra and inter-species affinities. We classified these distinct morphologies into “integrated”, “coated”, “leaved”, and “blocked” phases, and provide relevant phase diagrams for achieving them. Our findings are relevant to controlled and predictable assembly of particle networks for creating multifunctional composites with improved properties. 
    more » « less
  2. Surface functionalization of nanoparticles with polymer grafts was recently shown to be a viable strategy for controlling the relative orientation of shaped nanoparticles in their higher-order assemblies. In this study, we investigated in silico the orientational phase behavior of coplanar polymer-grafted nanocubes confined in a thin film. We first used Monte Carlo simulations to compute the two-particle interaction free-energy landscape of the nanocubes and identify their globally stable configurations. The nanocubes were found to exhibit four stable phases: those with edge–edge and face–face orientations, and those exhibiting partially overlapped slanted and parallel faces previously assumed to be metastable. Moreover, the edge–edge configuration originally thought to involve kissing edges instead displayed partly overlapping edges, where the extent of the overlap depends on the attachment positions of the grafts. We next formulated analytical scaling expressions for the free energies of the identified configurations, which were used for constructing a comprehensive phase diagram of nanocube orientation in a multidimensional parameter space comprising of the size and interaction strength of the nanocubes and the Kuhn length and surface density of the grafts. The morphology of the phase diagram was shown to arise from an interplay between polymer- and surface-mediated interactions, especially differences in their scalings with respect to nanocube size and grafting density across the four phases. The phase diagram provided insights into tuning these interactions through the various parameters of the system for achieving target configurations. Overall, this work provides a framework for predicting and engineering interparticle configurations, with possible applications in plasmonic nanocomposites where control over particle orientation is critical. 
    more » « less
  3. Light emission from biased tunnel junctions has recently gained much attention owing to its unique potential to create ultracompact optical sources with terahertz modulation bandwidth1,2,3,4,5. The emission originates from an inelastic electron tunnelling process in which electronic energy is transferred to surface plasmon polaritons and subsequently converted to radiation photons by an optical antenna. Because most of the electrons tunnel elastically, the emission efficiency is typically about 10−5–10−4. Here, we demonstrate efficient light generation from enhanced inelastic tunnelling using nanocrystals assembled into metal–insulator–metal junctions. The colour of the emitted light is determined by the optical antenna and thus can be tuned by the geometry of the junction structures. The efficiency of far-field free-space light generation reaches ~2%, showing an improvement of two orders of magnitude over previous work3,4. This brings on-chip ultrafast and ultracompact light sources one step closer to reality. 
    more » « less
  4. The integration of layer-by-layer (LbL) and self-assembly methods has the potential to achieve precision assembly of nanocomposite materials. Knowledge of how nanoparticles move across and within stacked materials is critical for directing nanoparticle assembly. Here, we investigate nanoparticle self-assembly within two different LbL architectures: (1) a bilayer composed of two immiscible polymer thin-films, and (2) a bilayer composed of polymer and graphene that possesses a “hard-soft” interface. Polymer-grafted silver nanocubes (AgNCs) are employed as a model nanoparticle system for systematic experiments – characterizing both assembly rate and resulting morphologies – that examine how assembly is affected by the presence of an interface. We observe that polymer grafts can serve to anchor AgNCs at the bilayer interface and to decrease particle mobility, or can promote particle transfer between layers. We also find that polymer viscosity and polymer mixing parameters can be used as predictors of assembly rate and behavior. These results provide a pathway for designing more complex multilayered nanocomposites. 
    more » « less