skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Orientational phase behavior of polymer-grafted nanocubes
Surface functionalization of nanoparticles with polymer grafts was recently shown to be a viable strategy for controlling the relative orientation of shaped nanoparticles in their higher-order assemblies. In this study, we investigated in silico the orientational phase behavior of coplanar polymer-grafted nanocubes confined in a thin film. We first used Monte Carlo simulations to compute the two-particle interaction free-energy landscape of the nanocubes and identify their globally stable configurations. The nanocubes were found to exhibit four stable phases: those with edge–edge and face–face orientations, and those exhibiting partially overlapped slanted and parallel faces previously assumed to be metastable. Moreover, the edge–edge configuration originally thought to involve kissing edges instead displayed partly overlapping edges, where the extent of the overlap depends on the attachment positions of the grafts. We next formulated analytical scaling expressions for the free energies of the identified configurations, which were used for constructing a comprehensive phase diagram of nanocube orientation in a multidimensional parameter space comprising of the size and interaction strength of the nanocubes and the Kuhn length and surface density of the grafts. The morphology of the phase diagram was shown to arise from an interplay between polymer- and surface-mediated interactions, especially differences in their scalings with respect to nanocube size and grafting density across the four phases. The phase diagram provided insights into tuning these interactions through the various parameters of the system for achieving target configurations. Overall, this work provides a framework for predicting and engineering interparticle configurations, with possible applications in plasmonic nanocomposites where control over particle orientation is critical.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Page Range / eLocation ID:
15939 to 15957
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Faceted nanoparticles can be used as building blocks to assemble nanomaterials with exceptional optical and catalytic properties. Recent studies have shown that surface functionalization of such nanoparticles with organic molecules, polymer chains, or DNA can be used to control the separation distance and orientation of particles within their assemblies. In this study, we computationally investigate the mechanism of assembly of nanocubes grafted with short-chain molecules. Our approach involves computing the interaction free energy landscape of a pair of such nanocubes via Monte Carlo simulations and using the Dijkstra algorithm to determine the minimum free energy pathway connecting key states in the landscape. We find that the assembly pathway of nanocubes is very rugged involving multiple energy barriers and metastable states. Analysis of nanocube configurations along the pathway reveals that the assembly mechanism is dominated by sliding motion of nanocubes relative to each other punctuated by their local dissociation at grafting points involving lineal separation and rolling motions. The height of energy barriers between metastable states depends on factors such as the interaction strength and surface roughness of the nanocubes and the steric repulsion from the grafts. These results imply that the observed assembly configuration of nanocubes depends not only on their globally stable minimum free energy state but also on the assembly pathway leading to this state. The free energy landscapes and assembly pathways presented in this study along with the proposed guidelines for engineering such pathways should be useful to researchers aiming to achieve uniform nanostructures from self-assembly of faceted nanoparticles. 
    more » « less
  2. Self-assembly of faceted nanoparticles is a promising route for fabricating nanomaterials; however, achieving low-dimensional assemblies of particles with tunable orientations is challenging. Here, we demonstrate that trapping surface-functionalized faceted nanoparticles at fluid–fluid interfaces is a viable approach for controlling particle orientation and facilitating their assembly into unique one- and two-dimensional superstructures. Using molecular dynamics simulations of polymer-grafted nanocubes in a polymer bilayer along with a particle-orientation classification method we developed, we show that the nanocubes can be induced into face-up, edge-up, or vertex-up orientations by tuning the graft density and differences in their miscibility with the two polymer layers. The orientational preference of the nanocubes is found to be governed by an interplay between the interfacial area occluded by the particle, the difference in interactions of the grafts with the two layers, and the stretching and intercalation of grafts at the interface. The resulting orientationally constrained nanocubes are then shown to assemble into a variety of unusual architectures, such as rectilinear strings, close-packed sheets, bilayer ribbons, and perforated sheets, which are difficult to obtain using other assembly methods. Our work thus demonstrates a versatile strategy for assembling freestanding arrays of faceted nanoparticles with possible applications in plasmonics, optics, catalysis, and membranes, where precise control over particle orientation and position is required. 
    more » « less
  3. Both the dispersion state of nanoparticles (NPs) within polymer nanocomposites (PNCs) and the dynamical state of the polymer altered by the presence of the NP/polymer interfaces have a strong impact on the macroscopic properties of PNCs. In particular, mechanical properties are strongly affected by percolation of hard phases, which may be NP networks, dynamically modified polymer regions, or combinations of both. In this article, the impact on dispersion and dynamics of surface modification of the NPs by short monomethoxysilanes with eight carbons in the alkyl part (C8) is studied. As a function of grafting density and particle content, polymer dynamics is followed by broadband dielectric spectroscopy and analyzed by an interfacial layer model, whereas the particle dispersion is investigated by small-angle X-ray scattering and analyzed by reverse Monte Carlo simulations. NP dispersions are found to be destabilized only at the highest grafting. The interfacial layer formalism allows the clear identification of the volume fraction of interfacial polymer, with its characteristic time. The strongest dynamical slow-down in the polymer is found for unmodified NPs, while grafting weakens this effect progressively. The combination of all three techniques enables a unique measurement of the true thickness of the interfacial layer, which is ca. 5 nm. Finally, the comparison between longer (C18) and shorter (C8) grafts provides unprecedented insight into the efficacy and tunability of surface modification. It is shown that C8-grafting allows for a more progressive tuning, which goes beyond a pure mass effect. 
    more » « less
  4. We report a facile route to the synthesis of Ag@Au–Pt trimetallic nanocubes in which the Ag, Au, and Pt atoms are exposed at the corners, side faces, and edges, respectively. Our success relies on the use of Ag@Au nanocubes, with Ag 2 O patches at the corners and Au on the side faces and edges, as seeds for the site-selective deposition of Pt on the edges only in a reaction system containing ascorbic acid (H 2 Asc) and poly(vinylpyrrolidone). At an initial pH of 3.2, H 2 Asc can dissolve the Ag 2 O patches, exposing the Ag atoms at the corners of a nanocube. Upon the injection of the H 2 PtCl 6 precursor, the Pt atoms derived from the reduction by both H 2 Asc and Ag are preferentially deposited on the edges, leading to the formation of Ag@Au–Pt trimetallic nanocubes. We demonstrate the use of 2,6-dimethylphenyl isocyanide as a molecular probe to confirm and monitor the deposition of Pt atoms on the edges of nanocubes through surface-enhanced Raman scattering (SERS). We further explore the use of these bifunctional trimetallic nanoparticles with integrated plasmonic and catalytic properties for in situ SERS monitoring the reduction of 4-nitrothiophenol by NaBH 4 . Upon the removal of Ag via H 2 O 2 etching, the Ag@Au–Pt nanocubes evolve into trimetallic nanoboxes with a wall thickness of about 2 nm and well-defined openings at the corners. The trimetallic nanoboxes embrace plasmon resonance peaks in the near-infrared region with potential in biomedical applications. 
    more » « less
  5. Abstract

    Magnetic nanoparticle chains offer the anisotropic magnetic properties that are often desirable for micro‐ and nanoscale systems; however, to date, large‐scale fabrication of these nanochains is limited by the need for an external magnetic field during the synthesis. In this work, the unique self‐assembly of nanoparticles into chains as a result of their intrinsic dipolar interactions only is examined. In particular, it is shown that in a high concentration reaction regime, the dipole–dipole coupling between two neighboring magnetic iron cobalt (FeCo) nanocubes, was significantly strengthened due to small separation between particles and their high magnetic moments. This dipole–dipole interaction enables the independent alignment and synthesis of magnetic FeCo nanochains without the assistance of any templates, surfactants, or even external magnetic field. Furthermore, the precursor concentration ([M] = 0.016, 0.021, 0.032, 0.048, 0.064, and 0.096m) that dictates the degree of dipole interaction is examined—a property dependent on particle size and inter‐particle distance. By varying the spinner speed, it is demonstrated that the balance between magnetic dipole coupling and fluid dynamics can be used to understand the self‐assembly process and control the final structural topology from that of dimers to linear chains (with aspect ratio >10:1) and even to branched networks. Simulations unveil the magnetic and fluid force landscapes that determine the individual nanoparticle interactions and provide a general insight into predicting the resulting nanochain morphology. This work uncovers the enormous potential of an intrinsic magnetic dipole‐induced assembly, which is expected to open new doors for efficient fabrication of 1D magnetic materials, and the potential for more complex assemblies with further studies.

    more » « less