Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Active learning agents typically employ a query selection algorithm which solely considers the agent's learning objectives. However, this may be insufficient in more realistic human domains. This work uses imitation learning to enable an agent in a constrained environment to concurrently reason about both its internal learning goals and environmental constraints externally imposed, all within its objective function. Experiments are conducted on a concept learning task to test generalization of the proposed algorithm to different environmental conditions and analyze how time and resource constraints impact efficacy of solving the learning problem. Our findings show the environmentally-aware learning agent is able to statistically outperform all other active learners explored under most of the constrained conditions. A key implication is adaptation for active learning agents to more realistic human environments, where constraints are often externally imposed on the learner.more » « less
-
We propose a learning framework, named Multi-Coordinate Cost Balancing (MCCB), to address the problem of acquiring point-to-point movement skills from demonstrations. MCCB encodes demonstrations simultaneously in multiple differential coordinates that specify local geometric properties. MCCB generates reproductions by solving a convex optimization problem with a multi-coordinate cost function and linear constraints on the reproductions, such as initial, target, and via points. Further, since the relative importance of each coordinate system in the cost function might be unknown for a given skill, MCCB learns optimal weighting factors that balance the cost function. We demonstrate the effectiveness of MCCB via detailed experiments conducted on one handwriting dataset and three complex skill datasets.more » « less
-
Complex manipulation tasks often require non-trivial and coordinated movements of different parts of a robot. In this work, we address the challenges associated with learning and reproducing the skills required to execute such complex tasks. Specifically, we decompose a task into multiple subtasks and learn to reproduce the subtasks by learning stable policies from demonstrations. By leveraging the RMPflow framework for motion generation, our approach finds a stable global policy in the configuration space that enables simultaneous execution of various learned subtasks. The resulting global policy is a weighted combination of the learned policies such that the motions are coordinated and feasible under the robot's kinematic and environmental constraints. We demonstrate the necessity and efficacy of the proposed approach in the context of multiple constrained manipulation tasks performed by a Franka Emika robot.more » « less
-
Learning from Demonstration (LfD) is a popular approach to endowing robots with skills without having to program them by hand. Typically, LfD relies on human demonstrations in clutter-free environments. This prevents the demonstrations from being affected by irrelevant objects, whose influence can obfuscate the true intention of the human or the constraints of the desired skill. However, it is unrealistic to assume that the robot's environment can always be restructured to remove clutter when capturing human demonstrations. To contend with this problem, we develop an importance weighted batch and incremental skill learning approach, building on a recent inference-based technique for skill representation and reproduction. Our approach reduces unwanted environmental influences on the learned skill, while still capturing the salient human behavior. We provide both batch and incremental versions of our approach and validate our algorithms on a 7-DOF JACO2 manipulator with reaching and placing skills.more » « less
-
In this paper, we present Combined Learning from demonstration And Motion Planning (CLAMP) as an efficient approach to skill learning and generalizable skill reproduction. CLAMP combines the strengths of Learning from Demonstration (LfD) and motion planning into a unifying framework. We carry out probabilistic inference to find trajectories which are optimal with respect to a given skill and also feasible in different scenarios. We use factor graph optimization to speed up inference. To encode optimality, we provide a new probabilistic skill model based on a stochastic dynamical system. This skill model requires minimal parameter tuning to learn, is suitable to encode skill constraints, and allows efficient inference. Preliminary experimental results showing skill generalization over initial robot state and unforeseen obstacles are presented.more » « less
An official website of the United States government

Full Text Available