Learning from Demonstration (LfD) is a promising approach to enable Multi-Robot Systems (MRS) to acquire complex skills and behaviors. However, the intricate interactions and coordination challenges in MRS pose significant hurdles for effective LfD. In this paper, we present a novel LfD framework specifically designed for MRS, which leverages visual demonstrations to capture and learn from robot-robot and robot-object interactions. Our framework introduces the concept of Interaction Keypoints (IKs) to transform the visual demonstrations into a representation that facilitates the inference of various skills necessary for the task. The robots then execute the task using sensorimotor actions and reinforcement learning (RL) policies when required. A key feature of our approach is the ability to handle unseen contact-based skills that emerge during the demonstration. In such cases, RL is employed to learn the skill using a classifier-based reward function, eliminating the need for manual reward engineering and ensuring adaptability to environmental changes. We evaluate our framework across a range of mobile robot tasks, covering both behavior-based and contact-based domains. The results demonstrate the effectiveness of our approach in enabling robots to learn complex multi-robot tasks and behaviors from visual demonstrations.
more »
« less
Learning Generalizable Robot Skills from Demonstrations in Cluttered Environments
Learning from Demonstration (LfD) is a popular approach to endowing robots with skills without having to program them by hand. Typically, LfD relies on human demonstrations in clutter-free environments. This prevents the demonstrations from being affected by irrelevant objects, whose influence can obfuscate the true intention of the human or the constraints of the desired skill. However, it is unrealistic to assume that the robot's environment can always be restructured to remove clutter when capturing human demonstrations. To contend with this problem, we develop an importance weighted batch and incremental skill learning approach, building on a recent inference-based technique for skill representation and reproduction. Our approach reduces unwanted environmental influences on the learned skill, while still capturing the salient human behavior. We provide both batch and incremental versions of our approach and validate our algorithms on a 7-DOF JACO2 manipulator with reaching and placing skills.
more »
« less
- Award ID(s):
- 1637562
- PAR ID:
- 10076796
- Date Published:
- Journal Name:
- IEEE/RSJ International Conference on Intelligent Robots and Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With growing access to versatile robotics, it is beneficial for end users to be able to teach robots tasks without needing to code a control policy. One possibility is to teach the robot through successful task executions. However, near-optimal demonstrations of a task can be difficult to provide and even successful demonstrations can fail to capture task aspects key to robust skill replication. Here, we propose a learning from demonstration (LfD) approach that enables learning of robust task definitions without the need for near-optimal demonstrations. We present a novel algorithmic framework for learning task specifications based on the ergodic metric—a measure of information content in motion. Moreover, we make use of negative demonstrations— demonstrations of what not to do—and show that they can help compensate for imperfect demonstrations, reduce the number of demonstrations needed, and highlight crucial task elements improving robot performance. In a proof-of-concept example of cart-pole inversion, we show that negative demonstrations alone can be sufficient to successfully learn and recreate a skill. Through a human subject study with 24 participants, we show that consistently more information about a task can be captured from combined positive and negative (posneg) demonstrations than from the same amount of just positive demonstrations. Finally, we demonstrate our learning approach on simulated tasks of target reaching and table cleaning with a 7-DoF Franka arm. Our results point towards a future with robust, data efficient LfD for novice users.more » « less
-
Robot-mediated therapy is an emerging field of research seeking to improve therapy for children with Autism Spectrum Disorder (ASD). Current approaches to autonomous robot-mediated therapy often focus on having a robot teach a single skill to children with ASD and lack a personalized approach to each individual. More recently, Learning from Demonstration (LfD) approaches are being explored to teach socially assistive robots to deliver personalized interventions after they have been deployed but these approaches require large amounts of demonstrations and utilize learning models that cannot be easily interpreted. In this work, we present a LfD system capable of learning the delivery of autism therapies in a data-efficient manner utilizing learning models that are inherently interpretable. The LfD system learns a behavioral model of the task with minimal supervision via hierarchical clustering and then learns an interpretable policy to determine when to execute the learned behaviors. The system is able to learn from less than an hour of demonstrations and for each of its predictions can identify demonstrated instances that contributed to its decision. The system performs well under unsupervised conditions and achieves even better performance with a low-effort human correction process that is enabled by the interpretable model.more » « less
-
Learning from demonstration (LfD) seeks to democratize robotics by enabling non-experts to intuitively program robots to perform novel skills through human task demonstration. Yet, LfD is challenging under a task and motion planning (TAMP) setting, as solving long-horizon manipulation tasks requires the use of hierarchical abstractions. Prior work has studied mechanisms for eliciting demonstrations that include hierarchical specifications for robotics applications but has not examined whether non-roboticist end-users are capable of providing such hierarchical demonstrations without explicit training from a roboticist for each task. We characterize whether, how, and which users can do so. Finding that the result is negative, we develop a series of training domains that successfully enable users to provide demonstrations that exhibit hierarchical abstractions. Our first experiment shows that fewer than half (35.71%) of our subjects provide demonstrations with hierarchical abstractions when not primed. Our second experiment demonstrates that users fail to teach the robot with adequately detailed TAMP abstractions, when not shown a video demonstration of an expert’s teaching strategy. Our experiments reveal the need for fundamentally different approaches in LfD to enable end-users to teach robots generalizable long-horizon tasks without being coached by experts at every step. Toward this goal, we developed and evaluated a set of TAMP domains for LfD in a third study. Positively, we find that experience obtained in different, training domains enables users to provide demonstrations with useful, plannable abstractions on new, test domains just as well as providing a video prescribing an expert’s teaching strategy in the new domain.more » « less
-
null (Ed.)Learning from Demonstration (LfD) enables novice users to teach robots new skills. However, many LfD methods do not facilitate skill maintenance and adaptation. Changes in task requirements or in the environment often reveal the lack of resiliency and adaptability in the skill model. To overcome these limitations, we introduce ARC-LfD: an Augmented Reality (AR) interface for constrained Learning from Demonstration that allows users to maintain, update, and adapt learned skills. This is accomplished through insitu visualizations of learned skills and constraint-based editing of existing skills without requiring further demonstration. We describe the existing algorithmic basis for this system as well as our Augmented Reality interface and the novel capabilities it provides. Finally, we provide three case studies that demonstrate how ARC-LfD enables users to adapt to changes in the environment or task which require a skill to be altered after initial teaching has taken place.more » « less
An official website of the United States government

