skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1637960

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Dynamic wetting phenomena are typically described by a constitutive law relating the dynamic contact angleθto contact-line velocityUCL. The so-called Davis–Hocking model is noteworthy for its simplicity and relatesθtoUCLthrough a contact-line mobility parameterM, which has historically been used as a fitting parameter for the particular solid–liquid–gas system. The recent experimental discovery of Xia & Steen (2018) has led to the first direct measurement ofMfor inertial-capillary motions. This opens up exciting possibilities for anticipating rapid wetting and dewetting behaviors, asMis believed to be a material parameter that can be measured in one context and successfully applied in another. Here, we investigate the extent to whichMis a material parameter through a combined experimental and numerical study of binary sessile drop coalescence. Experiments are performed using water droplets on multiple surfaces with varying wetting properties (static contact angle and hysteresis) and compared with numerical simulations that employ the Davis–Hocking condition with the mobilityMa fixed parameter, as measured by the cyclically dynamic contact angle goniometer, i.e. no fitting parameter. Side-view coalescence dynamics and time traces of the projected swept areas are used as metrics to compare experiments with numerical simulation. Our results show that the Davis–Hocking model with measured mobility parameter captures the essential coalescence dynamics and outperforms the widely used Kistler dynamic contact angle model in many cases. These observations provide insights in that the mobility is indeed a material parameter. 
    more » « less
  2. Abstract Moving contact-lines (CLs) dissipate. Sessile droplets, mechanically driven into resonance by plane-normal forcing of the contacting substrate, can exhibit oscillatory CL motions with CL losses dominating bulk dissipation. Conventional practice measures CL dissipation based on the rate of mechanical work of the unbalanced Young’s force at the CL. Typical approaches require measurements local to the CL and assumptions about the “equilibrium” contact angle (CA). This paper demonstrates how to use scanning of forcing frequency to characterize CL dissipation without any dependence on measurements from the vicinity of the CL. The results are of immediate relevance to an International Space Station (ISS) experiment and of longer-term relevance to Earth-based wettability applications. Experiments reported here use various concentrations of a water-glycerol mixture on a low-hysteresis non-wetting substrate. 
    more » « less
  3. Drawing parallels to the symmetry breaking of atomic orbitals used to explain the periodic table of chemical elements; here we introduce a periodic table of droplet motions, also based on symmetry breaking but guided by a recent droplet spectral theory. By this theory, higher droplet mode shapes are discovered and a wettability spectrometer is invented. Motions of a partially wetting liquid on a support have natural mode shapes, motions ordered by kinetic energy into the periodic table, each table characteristic of the spherical-cap drop volume and material parameters. For water on a support having a contact angle of about 60°, the first 35 predicted elements of the periodic table are discovered. Periodic tables are related one to another through symmetry breaking into a two-parameter family tree. 
    more » « less