skip to main content


Title: Is contact-line mobility a material parameter?
Abstract

Dynamic wetting phenomena are typically described by a constitutive law relating the dynamic contact angleθto contact-line velocityUCL. The so-called Davis–Hocking model is noteworthy for its simplicity and relatesθtoUCLthrough a contact-line mobility parameterM, which has historically been used as a fitting parameter for the particular solid–liquid–gas system. The recent experimental discovery of Xia & Steen (2018) has led to the first direct measurement ofMfor inertial-capillary motions. This opens up exciting possibilities for anticipating rapid wetting and dewetting behaviors, asMis believed to be a material parameter that can be measured in one context and successfully applied in another. Here, we investigate the extent to whichMis a material parameter through a combined experimental and numerical study of binary sessile drop coalescence. Experiments are performed using water droplets on multiple surfaces with varying wetting properties (static contact angle and hysteresis) and compared with numerical simulations that employ the Davis–Hocking condition with the mobilityMa fixed parameter, as measured by the cyclically dynamic contact angle goniometer, i.e. no fitting parameter. Side-view coalescence dynamics and time traces of the projected swept areas are used as metrics to compare experiments with numerical simulation. Our results show that the Davis–Hocking model with measured mobility parameter captures the essential coalescence dynamics and outperforms the widely used Kistler dynamic contact angle model in many cases. These observations provide insights in that the mobility is indeed a material parameter.

 
more » « less
Award ID(s):
1637960
NSF-PAR ID:
10363118
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Microgravity
Volume:
8
Issue:
1
ISSN:
2373-8065
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The energetics of drop deposition are considered in the capillary-ballistic regime characterized by high Reynolds number and moderate Weber number. Experiments are performed impacting water/glycol drops onto substrates with varying wettability and contact-angle hysteresis. The impacting event is decomposed into three regimes: (i) pre-impact, (ii) inertial spreading and (iii) post contact-line (CL) pinning, conveniently framed using the theory of Dussan & Davis ( J. Fluid Mech. , vol. 173, 1986, pp. 115–130). During fast-time-scale inertial spreading, the only form of dissipation is CL dissipation ( $\mathcal {D}_{CL}$ ). High-speed imaging is used to resolve the stick-slip dynamics of the CL with $\mathcal {D}_{CL}$ measured directly from experiment using the $\Delta \alpha$ - $R$ cyclic diagram of Xia & Steen ( J. Fluid Mech. , vol. 841, 2018, pp. 767–783), representing the contact-angle deviation against the CL radius. Energy loss occurs on slip legs, and this observation is used to derive a closed-form expression for the kinetic K and interfacial $\mathcal{A}$ post-pinning energy $\{K+\mathcal {A}\}_p/\mathcal {A}_o$ independent of viscosity, only depending on the rest angle $\alpha _p$ , equilibrium angle $\bar {\alpha }$ and hysteresis $\Delta \alpha$ , which agrees well with experimental observation over a large range of parameters, and can be used to evaluate contact-line dissipation during inertial spreading. The post-pinning energy is found to be independent of the pre-impact energy, and it is broken into modal components with corresponding energy partitioning approximately constant for low-hysteresis surfaces with fixed pinning angle $\alpha _p$ . During slow-time-scale post-pinning, the liquid/gas ( $lg$ ) interface is found to vibrate with the frequencies and mode shapes predicted by Bostwick & Steen ( J. Fluid Mech. , vol. 760, 2014, pp. 5–38), irrespective of the pre-impact energy. Resonant mode decay rates are determined experimentally from fast Fourier transforms of the interface dynamics. 
    more » « less
  2. Contact line dynamics is crucial in determining the deposition patterns of evaporating colloidal droplets. Using high-speed interferometry, we directly observe the stick-slip motion of the contact line in situ and are able to resolve the instantaneous shape of the inkjet-printed, evaporating pico-liter drops containing nanoparticles of varying wettability. Integrated with post-mortem optical profilometry of the deposition patterns, the instantaneous particle volume fraction and hence the particle deposition rate can be determined. The results show that the stick-slip motion of the contact line is a strong function of the particle wettability. While the stick-slip motion is observed for nanoparticles that are less hydrophilic ( i.e. , particle contact angle θ ≈ 74° at the water–air interface), which results in a multiring deposition, a continuous receding of the contact line is observed for more hydrophilic nanoparticles ( i.e. , θ ≈ 34°), which leaves a single-ring pattern. A model is developed to predict the number of particles required to pin the contact line based on the force balance of the hydrodynamic drag, interparticle interactions, and surface tension acting on the particles near the contact line with varying particle wettability. A three-fold increase in the number of particles required for pinning is predicted when the particle wettability increases from the wetting angle of θ ≈ 74° to θ ≈ 34°. This finding explains why particles with greater wettability form a single-ring pattern and those with lower wettability form a multi-ring pattern. In addition, the particle deposition rate is found to depend on the particle wettability and vary with time. 
    more » « less
  3. Abstract

    Lubricant‐infused surfaces (SLIPSs/LISs) enable omniphobicity by reducing droplet pinning through creation of an atomically smooth liquid–liquid interface. Although SLIPSs/LISs provide efficient omniphobicity, the need for lubricant adds additional barriers to heat and mass transport and affects three‐phase contact line dynamics. Here, evaporation dynamics of microscale water droplets on SLIPSs/LISs are investigated using steady and transient methods. Although steady results demonstrate that evaporation on SLIPSs/LISs is identical to solid functional surfaces having equivalent apparent contact angle, transient measurements show significant increases in evaporation timescale. To understand the inconsistency, high‐speed optical imaging is used to study the evaporating droplet free interface. Focal plane shift imaging enables the study of cloaking dynamics by tracking satellite microdroplet motion on the cloaked oil layer to characterize critical timescales. By decoupling the effect of substrate material and working fluid via experiments on both microstructured copper oxide and nanostructured boehmite with water and ethanol, it is demonstrated that lubricant cloaking cannot be predicted purely by thermodynamic considerations. Rather, coalescence dynamics, droplet formation, and surface interactions play important roles on establishing cloaking. The outcomes of this work shed light onto the physics of lubricant cloaking, and provide a powerful experimental platform to characterize droplet interfacial phenomena.

     
    more » « less
  4. Abstract

    We present a reanalysis of reverberation mapping data from 2005 for the Seyfert galaxy NGC 4151, supplemented with additional data from the literature to constrain the continuum variations over a significantly longer baseline than the original monitoring program. Modeling of the continuum light curve and the velocity-resolved variations across the Hβemission line constrains the geometry and kinematics of the broad line region (BLR). The BLR is well described by a very thick disk with similar opening angle (θo≈ 57°) and inclination angle (θi≈ 58°), suggesting that our sight line toward the innermost central engine skims just above the surface of the BLR. The inclination is consistent with constraints from geometric modeling of the narrow-line region, and the similarity between the inclination and opening angles is intriguing given previous studies of NGC 4151 that suggest BLR gas has been observed temporarily eclipsing the X-ray source. The BLR kinematics are dominated by eccentric bound orbits, with ∼10% of the orbits preferring near-circular motions. With the BLR geometry and kinematics constrained, the models provide an independent and direct black hole mass measurement oflogMBH/M=7.220.10+0.11orMBH=1.660.34+0.48×107M, which is in good agreement with mass measurements from stellar dynamical modeling and gas dynamical modeling. NGC 4151 is one of the few nearby broad-lined Seyferts where the black hole mass may be measured via multiple independent techniques, and it provides an important test case for investigating potential systematics that could affect the black hole mass scales used in the local universe and for high-redshift quasars.

     
    more » « less
  5. Abstract

    We present simulations of two-phase flow using the Rothman and Keller colour gradient Lattice Boltzmann method to study viscous fingering when a “red fluid” invades a porous model initially filled with a “blue” fluid with different viscosity. We conducted eleven suites of 81 numerical experiments totalling 891 simulations, where each suite had a different random realization of the porous model and spanned viscosity ratios in the range$$M\in [0.01,100]$$M[0.01,100]and wetting angles in the range$$\theta _w\in [180^\circ ,0^\circ ]$$θw[180,0]to allow us to study the effect of these parameters on the fluid-displacement morphology and saturation at breakthrough (sweep). Although sweep often increased with wettability, this was not always so and the sweep phase space landscape, defined as the difference in saturation at a given wetting angle relative to saturation for the non-wetting case, had hills, ridges and valleys. At low viscosity ratios, flow at breakthrough is localized through narrow fingers that span the model. After breakthrough, the flow field continues to evolve and the saturation continues to increase albeit at a reduced rate, and eventually exceeds 90% for both non-wetting and wetting cases. The existence of a complicated sweep phase space at breakthrough, and continued post-breakthrough evolution suggests the hydrodynamics and sweep is a complicated function of wetting angle, viscosity ratio and time, which has major potential implications to Enhanced Oil Recovery by water flooding, and hence, on estimates of global oil reserves. Validation of these results via experiments is required to ensure they translate to field studies.

     
    more » « less