skip to main content

Search for: All records

Award ID contains: 1638688

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract
    This dataset is a compilation of leaf trait measurements for tree species in the northeastern United States collected between 2017 and 2022 by the Terrestrial Ecosystems Analysis Lab at the University of New Hampshire. Currently, this dataset contains 1351 samples, including 18 chemical, physical and structural traits collected across 25 different tree species. Traits include stable isotopes for carbon (C) and nitrogen (N), percent C and N, C:N ratio, total chlorophyll (chl), chl a, chl b, chl a:b ratio, leaf mass per area, average leaf dry mass, average leaf area, length, and width, leaf water content, average petiole length and petiole dry mass, and petiole water content. Traits have been measured at plots spanning a wide range of latitude, longitude, elevation, and forest types. A simple table containing these plot descriptions have been included. Leaf physiological and optical traits have been measured concurrently on many of these samples and published separately.
  2. Abstract
    Leaf temperature measurements were collected during the summer of 2020 within forested areas at the Thompson Farm Earth Systems Observatory in Durham, New Hampshire, USA. Located within the property is a registered Ameriflux site, Thompson Farm Forest (US-TFF), as well as experimental throughfall exclusion plots that are part of DroughtNet (experiment running since 2015). Leaf temperature measurements were made within the footprint of the eddy covariance flux tower as well as within both control and throughfall exclusion treatment plots. Upper canopy foliage was accessed using a bucket lift and in situ measurements made using a handheld thermal IR sensor. All data were paired with concurrent meteorological measurements from US-TFF or data from a co-located NOAA CRN station (NH Durham 2 SSW). Additionally, leaf chemical, physical, structure, and physiological traits have been measured at this site as well as canopy scale measures of structure and UAV-based spectral, thermal, and lidar imagery. Specific to this leaf temperature dataset, leaf-level light, temperature, and vpd photosynthetic response curves were measured.
  3. Abstract
    LiDAR data were acquired over the footprint of the flux tower and established long-term study plots at Thompson Farm Observatory, Durham, NH during the growing season. Data were acquired using a LiVox Avia lidar sensor on a Green Valley International LiAirV70 payload. The LiVox Avia is a triple echo 905 nm lidar sensor with a non-repetitive circular scanning pattern that can retrieve ~700,000 returns per second. The sensor payload was flown on board a DJI M300 at an altitude of ~65 m above ground level in a double grid pattern with ~32 m flight line spacing, yielding a return density across the sampling area >500 points per square meter. Returns were georeferenced to WGS84 UTM Zone 19N coordinates with heights above ellipsoid using Green Valley International’s LiGeoreference software with automatic boresight calibration. Outliers were removed, then flight line point clouds were merged. Returns were classified as ground and non-ground returns using Green Valley International’s Lidar360 software and output as LAS (v 1.4) data sets. LAS files were subsequently tiled for publication.
  4. Abstract
    Leaf angle distribution (LAD) measurements were made during the growing season in 2021 at the Harvard Forest in Petersham, MA, USA, and in 2022 at the Thompson Farm Earth Systems Observatory in Durham, NH, USA. At both sites, a level-calibrated digital angle tool was used to measure LAD in upper canopy foliage of common northeastern temperate tree species accessed using a mobile canopy lift. Additionally, at Thompson Farm, measurements were made at multiple heights to characterize differences of LAD in high, middle, and low canopy positions. Here, we have published those measurements, including a summary table of species average leaf angles and calculated parameters for fitted beta distributions. Processing scripts can be made available upon request to the authors. Additionally, leaf chemical, physical, structure, optical and physiological traits have been measured at these site as well as canopy scale measures of structure and UAV-based spectral, thermal, and lidar imagery.
  5. Abstract
    Orthorectified flight line hyperspectral cubes retiled for publication. Collectively, the tiled hyperspectral cubes cover the footprint of the flux tower and established long-term study plots at Thompson Farm Observatory, Durham, NH. Data were acquired using a Headwall Photonics, Inc. Nano VNIR hyperspectral line scanning imager with 273 bands from 400-1000 nm. The sensor was flown on board a DJI M600 hexacopter at an altitude of ~80 m above the forest canopy, yielding ~6 cm GSD. Flight lines were converted from raw sensor observations to upwelling radiance a using a vendor-supplied radiometric calibration file for the sensor, then converted to reflectance using a calibration tarp with known reflectance. Finally, cubes were orthorectified using a 1m DSM in Headwall’s SpectralView software, mosaicked to individual flight line cubes, then subsequently tiled for publication.
  6. Abstract
    LiDAR data were acquired over the footprint of the flux tower and established long-term study plots at Thompson Farm Observatory, Durham, NH during leaf-off conditions in November 2022. Data were acquired using a LiVox Avia lidar sensor on a Green Valley International LiAirV70 payload. The LiVox Avia is a triple echo 905 nm lidar sensor with a non-repetitive circular scanning pattern that can retrieve ~700,000 returns per second. The sensor payload was flown on board a DJI M300 at an altitude of ~65 m above ground level in a double grid pattern with ~32 m flight line spacing, yielding a return density across the sampling area >500 points per square meter. Returns were georeferenced to WGS84 UTM Zone 19N coordinates with heights above ellipsoid using Green Valley International’s LiGeoreference software with automatic boresight calibration. Outliers were removed, then flight line point clouds were merged. Returns were classified as ground and non-ground returns using Green Valley International’s Lidar360 software and output as LAS (v 1.4) data sets. LAS files were subsequently tiled for publication.