Leaf temperature measurements were collected during the summer of 2020 within forested areas at the Thompson Farm Earth Systems Observatory in Durham, New Hampshire, USA. Located within the property is a registered Ameriflux site, Thompson Farm Forest (US-TFF), as well as experimental throughfall exclusion plots that are part of DroughtNet (experiment running since 2015). Leaf temperature measurements were made within the footprint of the eddy covariance flux tower as well as within both control and throughfall exclusion treatment plots. Upper canopy foliage was accessed using a bucket lift and in situ measurements made using a handheld thermal IR sensor. All data were paired with concurrent meteorological measurements from US-TFF or data from a co-located NOAA CRN station (NH Durham 2 SSW). Additionally, leaf chemical, physical, structure, and physiological traits have been measured at this site as well as canopy scale measures of structure and UAV-based spectral, thermal, and lidar imagery. Specific to this leaf temperature dataset, leaf-level light, temperature, and vpd photosynthetic response curves were measured. 
                        more » 
                        « less   
                    
                            
                            Leaf angle measurements for temperate tree species in northeastern USA
                        
                    
    
            Leaf angle distribution (LAD) measurements were made during the growing season in 2021 at the Harvard Forest in Petersham, MA, USA, and in 2022 at the Thompson Farm Earth Systems Observatory in Durham, NH, USA. At both sites, a level-calibrated digital angle tool was used to measure LAD in upper canopy foliage of common northeastern temperate tree species accessed using a mobile canopy lift. Additionally, at Thompson Farm, measurements were made at multiple heights to characterize differences of LAD in high, middle, and low canopy positions. Here, we have published those measurements, including a summary table of species average leaf angles and calculated parameters for fitted beta distributions. Processing scripts can be made available upon request to the authors. Additionally, leaf chemical, physical, structure, optical and physiological traits have been measured at these site as well as canopy scale measures of structure and UAV-based spectral, thermal, and lidar imagery. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10400722
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Optimizing leaf angle and other canopy architecture traits has helped modern maize (Zea maysL.) become adapted to higher planting densities over the last 60 years. Traditional investigations into genetic control of leaf angle have focused on one leaf or the average of multiple leaves; as a result, our understanding of genetic control across multiple canopy levels is still limited. To address this, genetic mapping across four canopy levels was conducted in the present study to investigate the genetic control of leaf angle across the canopy. We developed two populations of doubled haploid lines derived from three inbreds with distinct leaf angle phenotypes. These populations were genotyped with genotyping‐by‐sequencing and phenotyped for leaf angle at four different canopy levels over multiple years. To understand how leaf angle changes across the canopy, the four measurements were used to derive three additional traits. Composite interval mapping was conducted with the leaf‐specific measurements and the derived traits. A set of 59 quantitative trait loci (QTLs) were uncovered for seven traits, and two genomic regions were consistently detected across multiple canopy levels. Additionally, seven genomic regions were found to contain consistent QTLs with either relatively stable or dynamic effects at different canopy levels. Prioritizing the selection of QTLs with dynamic effects across the canopy will aid breeders in selecting maize hybrids with the ideal canopy architecture that continues to maximize yield on a per area basis under increasing planting densities.more » « less
- 
            Summary Leaf angle distribution (LAD) in forest canopies affects estimates of leaf area, light interception, and global‐scale photosynthesis, but is often simplified to a single theoretical value. Here, we present TLSLeAF (Terrestrial Laser Scanning Leaf Angle Function), an automated open‐source method of deriving LADs from terrestrial laser scanning.TLSLeAF produces canopy‐scale leaf angle and LADs by relying on gridded laser scanning data. The approach increases processing speed, improves angle estimates, and requires minimal user input. Key features are automation, leaf–wood classification, beta parameter output, and implementation in R to increase accessibility for the ecology community.TLSLeAF precisely estimates leaf angle with minimal distance effects on angular estimates while rapidly producing LADs on a consumer‐grade machine. We challenge the popular spherical LAD assumption, showing sensitivity to ecosystem type in plant area index and foliage profile estimates that translate toc. 25% andc. 11% increases in canopy net photosynthesis (c. 25%) and solar‐induced chlorophyll fluorescence (c. 11%).TLSLeAF can now be applied to the vast catalog of laser scanning data already available from ecosystems around the globe. The ease of use will enable widespread adoption of the method outside of remote‐sensing experts, allowing greater accessibility for addressing ecological hypotheses and large‐scale ecosystem modeling efforts.more » « less
- 
            Abstract Background and AimsVariation in architectural traits related to the spatial and angular distribution of leaf area can have considerable impacts on canopy-scale fluxes contributing to water-use efficiency (WUE). These architectural traits are frequent targets for crop improvement and for improving the understanding and predictions of net ecosystem carbon and water fluxes. MethodsA three-dimensional, leaf-resolving model along with a range of virtually generated hypothetical canopies were used to quantify interactions between canopy structure and WUE by examining its response to variation of leaf inclination independent of leaf azimuth, canopy heterogeneity, vegetation density and physiological parameters. Key ResultsOverall, increasing leaf area index (LAI), increasing the daily-averaged fraction of leaf area projected in the sun direction (Gavg) via the leaf inclination or azimuth distribution and increasing homogeneity had a similar effect on canopy-scale daily fluxes contributing to WUE. Increasing any of these parameters tended to increase daily light interception, increase daily net photosynthesis at low LAI and decrease it at high LAI, increase daily transpiration and decrease WUE. Isolated spherical crowns could decrease photosynthesis by ~60 % but increase daily WUE ≤130 % relative to a homogeneous canopy with equivalent leaf area density. There was no observed optimum in daily canopy WUE as LAI, leaf angle distribution or heterogeneity was varied. However, when the canopy was dense, a more vertical leaf angle distribution could increase both photosynthesis and WUE simultaneously. ConclusionsVariation in leaf angle and density distributions can have a substantial impact on canopy-level carbon and water fluxes, with potential trade-offs between the two. These traits might therefore be viable target traits for increasing or maintaining crop productivity while using less water, and for improvement of simplified models. Increasing canopy density or decreasing canopy heterogeneity increases the impact of leaf angle on WUE and its dependent processes.more » « less
- 
            Grapevine leaves have diverse shapes and sizes which are influenced by many factors including genetics, vine phytosanitary status, environment, leaf and vine age, and node position on the shoot. To determine the relationship between grapevine leaf shape or size and leaf canopy temperature, we examined five seedling populations grown in a vineyard in California, USA. The populations had one parent with compound leaves of the Vitis piasezkii type and a different second parent with non-compound leaves. In previous work, we had measured the shape and size of the leaves collected from these populations using 21 homologous landmarks. Here, we paired these morphological data with canopy temperature measurements made using a handheld infrared thermometer. After recording time of sampling and canopy temperature, we used a linear model between time of sampling and canopy temperature to estimate temperature residuals. Based on these residuals, we determined if the canopy temperature of each vine was cooler or warmer than expected, based on the time of sampling. We established a relationship between leaf size and canopy temperature: vines with larger leaves were cooler than expected. By contrast, leaf shape was not strongly correlated with variation in canopy temperature. Ultimately, these findings indicate that vines with larger leaves may contribute to the reduction of overall canopy temperature; however, further work is needed to determine whether this is due to variation in leaf size, differences in the openness of the canopy or other related traits.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
