Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Conventional computing architectures have no known efficient algorithms for combinatorial optimization tasks such as the Ising problem, which requires finding the ground state spin configuration of an arbitrary Ising graph. Physical Ising machines have recently been developed as an alternative to conventional exact and heuristic solvers; however, these machines typically suffer from decreased ground state convergence probability or universality for high edge-density graphs or arbitrary graph weights, respectively. We experimentally demonstrate a proof-of-principle integrated nanophotonic recurrent Ising sampler (INPRIS), using a hybrid scheme combining electronics and silicon-on-insulator photonics, that is capable of converging to the ground state of various four-spin graphs with high probability. The INPRIS results indicate that noise may be used as a resource to speed up the ground state search and to explore larger regions of the phase space, thus allowing one to probe noise-dependent physical observables. Since the recurrent photonic transformation that our machine imparts is a fixed function of the graph problem and therefore compatible with optoelectronic architectures that support GHz clock rates (such as passive or non-volatile photonic circuits that do not require reprogramming at each iteration), this work suggests the potential for future systems that could achieve orders-of-magnitude speedups in exploring the solution space of combinatorially hard problems.more » « less
-
Multicore systems should support both speculative and non-speculative parallelism. Speculative parallelism is easy to use and is crucial to scale many challenging applications, while non-speculative parallelism is more efficient and allows parallel irrevocable actions (e.g., parallel I/O). Unfortunately, prior techniques are far from this goal. Hardware transactional memory (HTM) systems support speculative (transactional) and non-speculative (non-transactional) work, but lack coordination mechanisms between the two, and are limited to unordered parallelism. Prior work has extended HTMs to avoid the limitations of speculative execution, e.g., through escape actions and open-nested transactions. But these mechanisms are incompatible with systems that exploit ordered parallelism, which parallelize a broader range of applications and are easier to use. We contribute two techniques that enable seamlessly composing and coordinating speculative and non-speculative work in the context of ordered parallelism: (i) a task-based execution model that efficiently coordinates concurrent speculative and non-speculative ordered tasks, allowing them to create tasks of either kind and to operate on shared data; and (ii) a safe way for speculative tasks to invoke software-managed speculative actions that avoid hardware version management and conflict detection. These contributions improve efficiency and enable new capabilities. Across several benchmarks, they allow the system to dynamically choose whether to execute tasks speculatively or non-speculatively, avoid needless conflicts among speculative tasks, and allow speculative tasks to safely invoke irrevocable actions.more » « less
-
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find the network needs to be trained on only a small sampling of the data in order to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used solve nanophotonic inverse design problems by using backpropagation - where the gradient is analytical, not numerical.more » « less
An official website of the United States government

Full Text Available