- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dabydeen, Donnette (1)
-
Gonzalez-Hernandez, Jose-Luis (1)
-
Kandlikar, Dr. Satish (1)
-
Medeiros, Lori (1)
-
Phatak, Pradyumna (1)
-
Satish G. Kandlikar, Isaac Perez-Raya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Infrared breast thermography has been associated with the early detection of breast cancer. However, findings in previous studies have been inconclusive. The upright position of subjects during imaging introduces errors in interpretation because it blocks the optical access in the inframammary fold region and alters the temperature due to contact between breast and chest wall. These errors can be avoided by imaging breasts in prone position. Although the numerical simulations provide insight into thermal characteristics of the female breast with a tumor, most simulations in the past have used cubical and hemispherical breast models. We hypothesize that a breast model with the actual breast shape will provide true thermal characteristics that are useful in tumor detection. A digital breast model in prone position is developed to generate the surface temperature profiles for breasts with tumors. The digital breast model is generated from sequential MRI images and simulations are performed using Finite Volume Method employing Pennes bioheat equation. We investigated the effect of varying the tumor metabolic activity on the surface temperature profile. We compared the surface temperature profile for various tumor metabolic activities with a case without tumor. The resulting surface temperature rise near the location of the tumor was between 0.665 and 1.023 °C, detectable using modern Infrared cameras. This is the first time that numerical simulations are conducted in a model with the actual breast shape in prone position to study the surface temperature changes induced by breast cancer.more » « less
-
Satish G. Kandlikar, Isaac Perez-Raya (, International Journal of Heat and Mass Transfer)Early and accurate detection of breast cancer is a critical part of the strategy to reduce the morbidity and mortality associated with this common disease. While current guidelines recommend mammography for screening, the sensitivity and specificity of mammograms remains less than optimal, especially for patients with dense breast tissue. Thermography has been explored in the past as an alternative to mammography. Advances in IR cameras that are used to obtain thermal images of the breast as well as computational tools used to accurately model heat transfer within the breast have significantly increased the accuracy of thermography. The current work reviews the progress that has been made in using thermal imaging to detect breast cancer over the past three decades and identifies aspects that need further refinement for it to become a reliable tool to diagnose breast cancer. Recent advances and suggestions for future work in the field including using advanced simulation methods, inverse modeling, imaging protocols, and using artificial neural networks to better predict the location of the tumor are also presented.more » « less