skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1642446

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    “Long tail” data are considered to be smaller, heterogeneous, researcher‐held data, which present unique data management and scholarly communication challenges. These data are presumably concentrated within relatively lower‐funded projects due to insufficient resources for curation. To better understand the nature and distribution of long tail data, we examine National Science Foundation (NSF) funding patterns using Latent Dirichlet Allocation (LDA) and bibliographic data. We also introduce the concept of “Topic Investment” to capture differences in topics across funding levels and to illuminate the distribution of funding across topics. This study uses the discipline of astronomy as a case study, overall exploring possible associations between topic, funding level and research output, with implications for research policy and practice. We find that while different topics demonstrate different funding levels and publication patterns, dynamics predicted by the “long tail” theoretical framework presented here can be observed within NSF‐funded topics in astronomy. 
    more » « less