skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1642542

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we study the impacts of latency variation versus latency mean on application runtime, library performance, and packet delivery. Our contributions include the design and implementation of a network latency injector that is suitable for most QLogic and Mellanox InfiniBand cards. We fit statistical distributions of latency mean and variation to varying levels of network contention for a range of parallel application workloads. We use the statistical distributions to characterize the latency variation impacts to application degradation. The level of application degradation caused by variation in network latency depends on application characteristics, and can be significant. Observed degradation varies from no degradation for applications without communicating processes to 3.5 times slower for communication-intensive parallel applications. We support our results with statistical analysis of our experimental observations. For communication-intensive high performance computing applications, we show statistically significant evidence that changes in performance are more highly correlated with changes of variation in network latency than with changes of mean network latency alone. 
    more » « less
  2. The industry standard Packet CAPture (PCAP) format for storing network packet traces is normally only readable in serial due to its lack of delimiters, indexing, or blocking. This presents a challenge for parallel analysis of large networks, where packet traces can be many gigabytes in size. In this work we present RAPCAP, a novel method for random access into variable-length record collections like PCAP by identifying a record boundary within a small number of bytes of the access point. Unlike related heuristic methods that can limit scalability with a nonzero probability of error, the new method offers a correctness guarantee with a well formed file and does not rely on prior knowledge of the contents. We include a practical implementation of the algorithm with an extension to the Hadoop framework, and a performance comparison to serial ingestion. Finally, we present a number of similar storage types that could utilize a modified version of RAPCAP for random access. 
    more » « less
  3. The industry standard Packet CAPture (PCAP) format for storing network packet traces is normally only readable in serial due to its lack of delimiters, indexing, or blocking. This presents a challenge for parallel analysis of large networks, where packet traces can be many gigabytes in size. In this work we present RAPCAP, a novel method for random access into variable-length record collections like PCAP by identifying a record boundary within a small number of bytes of the access point. Unlike related heuristic methods that can limit scalability with a nonzero probability of error, the new method offers a correctness guarantee with a well formed file and does not rely on prior knowledge of the contents. We include a practical implementation of the algorithm with an extension to the Hadoop framework, and a performance comparison to serial ingestion. Finally, we present a number of similar storage types that could utilize a modified version of RAPCAP for random access. 
    more » « less
  4. Recent work has shown that lightweight virtualization like Docker containers can be used in HPC to package applications with their runtime environments. In many respects, applications in containers perform similarly to native applications. Other work has shown that containers can have adverse effects on the latency variation of communications with the enclosed application. This latency variation may have an impact on the performance of some HPC workloads, especially those dependent on synchronization between processes. In this work, we measure the latency characteristics of messages between Docker containers, and then compare those measurements to the performance of real-world applications. Our specific goals are to: measure the changes in mean and variation of latency with Docker containers, study how this affects the synchronization time of MPI processes, and measure the impact of these factors on real­world applications such as the NAS Parallel Benchmark (NPB). 
    more » « less