skip to main content

Search for: All records

Award ID contains: 1642865

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper proposes a new multiple access technique based on the millimeter wave lens-based reconfigurable antenna systems. In particular, to support a large number of groups of users with different angles of departures (AoDs), we integrate recently proposed reconfigurable antenna multiple access (RAMA) into non-orthogonal multiple access (NOMA). The proposed technique, named reconfigurable antenna NOMA (RA-NOMA), divides the users with respect to their AoDs and channel gains. Users with different AoDs and comparable channel gains are served via RAMA while users with the same AoDs but different channel gains are served via NOMA. This technique results in the independence ofmore »the number of radio frequency chains from the number of NOMA groups. Further, we derive the feasibility conditions and show that the power allocation for RA-NOMA is a convex problem. We then derive the maximum achievable sum-rate of RA-NOMA. Simulation results show that RA-NOMA outperforms conventional orthogonal multiple access (OMA) as well as the combination of RAMA with the OMA techniques.« less
  2. Low-density parity check (LDPC) codes have been extensively applied in mobile communication systems due to their excellent error correcting capabilities. However, their broad adoption has been hindered by the high complexity of the LDPC decoder. Although to date, dedicated hardware has been used to implement low latency LDPC decoders, recent advancements in the architecture of mobile processors have made it possible to develop software solutions. In this paper, we propose a multi-stream LDPC decoder designed for a mobile device. The proposed decoder uses graphics processing unit (GPU) of a mobile device to achieve efficient real-time decoding. The proposed solution ismore »implemented on an NVIDIA Tegra board as a system on a chip (SoC), where our results indicate that we can control the load on the central processing units through the multi-stream structure.« less
  3. In this paper, a 4 ×4-element waveguide-aperture array antenna is designed for applications in the 60 GHz band. To simplify the design process of the feed network, instead of using a conventional waveguide power divider, an efficient approach is proposed where the antenna is fed with two layers of back cavities to distribute power uniformly among the array aperture. The connection between cavities is obtained by a set of coupling slots. A standard WR-15 rectangular waveguide is designed to excite the antenna at the input port over the operating frequency. Furthermore, to improve the antenna gain characteristics and reduce size,more »array aperture is loaded with a dielectric plate. The most significant advantage of using this design is its efficient radiation patterns and the ability to decrease complexity of feeding network. Simulated results demonstrate that the antenna gain is larger than 25 dB over the frequency range from 58 to 64 GHz. This high gain antenna combined with the simplicity of feeding network is greatly advantageous to millimeter wave applications.« less
  4. Millimeter-wave (mmWave) communication is anticipated to provide significant throughout gains in urban scenarios. To this end, network densification is a necessity to meet the high traffic volume generated by smart phones, tablets, and sensory devices while overcoming large pathloss and high blockages at mmWaves frequencies. These denser networks are created with users deploying small mm Wave base stations (BSs) in a plug-and-play fashion. Although, this deployment method provides the required density, the amorphous deployment of BSs needs distributed management. To address this difficulty, we propose a self-organizing method to allocate power to mm Wave BSs in an ultra dense network.more »The proposed method consists of two parts: clustering using fast local clustering and power allocation via Q-learning. The important features of the proposed method are its scalability and self-organizing capabilities, which are both important features of 5G. Our simulations demonstrate that the introduced method, provides required quality of service (QoS) for all the users independent of the size of the network.« less
  5. This paper aims to realize a new multiple access technique based on recently proposed millimeter- wave reconfigurable antenna architectures. To this end, first we show that integration of the existing reconfigurable antenna systems with the well-known non-orthogonal multiple access (NOMA) technique causes a significant degradation in sum rate due to the inevitable power division in reconfigurable antennas. To circumvent this fundamental limit, a new multiple access technique is proposed. The technique which is called reconfigurable antenna multiple access (RAMA) transmits only each user's intended signal at the same time/frequency/code, which makes RAMA an inter-user interference-free technique. Two different cases aremore »considered, i.e., RAMA with partial and full channel state information (CSI). In the first case, CSI is not required and only the direction of arrival for a specific user is used. Our analytical results indicate that with partial CSI and for symmetric channels, RAMA outperforms NOMA in terms of sum rate. Further, the analytical result indicates that RAMA for asymmetric channels achieves better sum rate than NOMA when less power is assigned to users that experience better channel quality. In the second case, RAMA with full CSI allocates optimal power to each user which leads to higher achievable rates compared to NOMA for both symmetric and asymmetric channels. The numerical computations demonstrate the analytical findings.« less
  6. There is an increase in usage of smaller cells or femtocells to improve performance and coverage of next-generation heterogeneous wireless networks (HetNets). However, the interference caused by femtocells to neighboring cells is a limiting performance factor in dense HetNets. This interference is being managed via distributed resource allocation methods. However, as the density of the network increases so does the complexity of such resource allocation methods. Yet, unplanned deployment of femtocells requires an adaptable and self-organizing algorithm to make HetNets viable. As such, we propose to use a machine learning approach based on Q-learning to solve the resource allocation problemmore »in such complex networks. By defining each base station as an agent, a cellular network is modeled as a multi-agent network. Subsequently, cooperative Q-learning can be applied as an efficient approach to manage the resources of a multi-agent network. Furthermore, the proposed approach considers the quality of service (QoS) for each user and fairness in the network. In comparison with prior work, the proposed approach can bring more than a four-fold increase in the number of supported femtocells while using cooperative Q-learning to reduce resource allocation overhead.« less
  7. This paper deals with the unavailability of full CSI in ultra-dense user-centric TDD C-RAN. To reduce the channel training overhead, we consider the incomplete CSI case, where only large-scale inter-cluster CSI is available. Channel estimation for intra-cluster CSI is also considered, where we formulate a joint pilot allocation and user equipment (UE) selection problem to maximize the number of admitted UEs with fixed number of pilots. A novel pilot allocation algorithm is proposed by considering the multi-UE pilot interference. Then, we consider robust beam-vector optimization problem subject to UEs' data rate requirements and fronthaul capacity constraints, where the channel estimationmore »error and incomplete inter-cluster CSI are considered. Simulation results demonstrate its superiority over the existing algorithms.« less