skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reconfigurable Antenna Multiple Access for 5G mmWave Systems
This paper aims to realize a new multiple access technique based on recently proposed millimeter- wave reconfigurable antenna architectures. To this end, first we show that integration of the existing reconfigurable antenna systems with the well-known non-orthogonal multiple access (NOMA) technique causes a significant degradation in sum rate due to the inevitable power division in reconfigurable antennas. To circumvent this fundamental limit, a new multiple access technique is proposed. The technique which is called reconfigurable antenna multiple access (RAMA) transmits only each user's intended signal at the same time/frequency/code, which makes RAMA an inter-user interference-free technique. Two different cases are considered, i.e., RAMA with partial and full channel state information (CSI). In the first case, CSI is not required and only the direction of arrival for a specific user is used. Our analytical results indicate that with partial CSI and for symmetric channels, RAMA outperforms NOMA in terms of sum rate. Further, the analytical result indicates that RAMA for asymmetric channels achieves better sum rate than NOMA when less power is assigned to users that experience better channel quality. In the second case, RAMA with full CSI allocates optimal power to each user which leads to higher achievable rates compared to NOMA for both symmetric and asymmetric channels. The numerical computations demonstrate the analytical findings.  more » « less
Award ID(s):
1642865
PAR ID:
10076911
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Communications Workshops (ICC Workshops)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes a new multiple access technique based on the millimeter wave lens-based reconfigurable antenna systems. In particular, to support a large number of groups of users with different angles of departures (AoDs), we integrate recently proposed reconfigurable antenna multiple access (RAMA) into non-orthogonal multiple access (NOMA). The proposed technique, named reconfigurable antenna NOMA (RA-NOMA), divides the users with respect to their AoDs and channel gains. Users with different AoDs and comparable channel gains are served via RAMA while users with the same AoDs but different channel gains are served via NOMA. This technique results in the independence of the number of radio frequency chains from the number of NOMA groups. Further, we derive the feasibility conditions and show that the power allocation for RA-NOMA is a convex problem. We then derive the maximum achievable sum-rate of RA-NOMA. Simulation results show that RA-NOMA outperforms conventional orthogonal multiple access (OMA) as well as the combination of RAMA with the OMA techniques. 
    more » « less
  2. null (Ed.)
    Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed. Distributed computation makes FL attractive for bandwidth limited applications especially in wireless communications. There can be a large number of distributed edge devices connected to a central parameter server (PS) and iteratively download/upload data from/to the PS. Due to limited bandwidth, only a subset of connected devices can be scheduled in each round. There are usually millions of parameters in the state-of-art machine learning models such as deep learning, resulting in a high computation complexity as well as a high communication burden on collecting/distributing data for training. To improve communication efficiency and make the training model converge faster, we propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate under practical constraints during the entire learning process. NOMA allows multiple users to transmit on the same channel simultaneously. The user scheduling problem is transformed into a maximum-weight independent set problem that can be solved using graph theory. Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks than other existing schemes within the same learning time. 
    more » « less
  3. Cooperative jamming is deemed as a promising physical layer based approach to secure wireless transmissions in the presence of eavesdroppers. In this paper, we investigate cooperative jamming in a two-tier 5G heterogeneous network (HetNet), where the macro base stations (MBSs) at the macrocell tier are equipped with large-scale antenna arrays to provide space diversity and the local base stations (LBSs) at the local cell tier adopt non-orthogonal multiple access (NOMA) to accommodate dense local users. In the presence of imperfect channel state information, we propose three robust secrecy transmission algorithms that can be applied to various scenarios with different security requirements. The first algorithm employs robust beamforming (RBA) that aims to optimize the secrecy rate of a marco user (MU) in a macrocell. The second algorithm provides robust power allocation (RPA) that can optimize the secrecy rate of a local user (LU) in a local cell. The third algorithm tackles a robust joint optimization (RJO) problem across tiers that seeks the maximum secrecy sum rate of a target MU and a target LU robustly. We employ convex optimization techniques to find feasible solutions to these highly non-convex problems. Numerical results demonstrate that the proposed algorithms are highly effective in improving the secrecy performance of a two-tier HetNet. 
    more » « less
  4. Massive MIMO systems can achieve high spectrum and energy efficiency in downlink (DL) based on accurate estimate of channel state information (CSI). Existing works have developed learning-based DL CSI estimation that lowers uplink feedback overhead. One often overlooked problem is the limited number of DL pilots available for CSI estimation. One proposed solution leverages temporal CSI coherence by utilizing past CSI estimates and only sending CSI-reference symbols (CSIRS) for partial arrays to preserve CSI recovery performance. Exploiting CSI correlations, FDD channel reciprocity is helpful to base stations with direct access to uplink CSI. In this work, we propose a new learning-based feedback architecture and a reconfigurable CSI-RS placement scheme to reduce DL CSI training overhead and to improve encoding efficiency of CSI feedback. Our results demonstrate superior performance in both indoor and outdoor scenarios by the proposed framework for CSI recovery at substantial reduction of computation power and storage requirements at UEs. 
    more » « less
  5. Novel sparse regression LDPC (SR-LDPC) codes exhibit excellent performance over additive white Gaussian noise (AWGN) channels in part due to their natural provision of shaping gains. Though SR-LDPC-like codes have been considered within the context of single-user error correction and massive random access, they are yet to be examined as candidates for coordinated multi-user communication scenarios. This article explores this gap in the literature and demonstrates that SR-LDPC codes, when combined with coded demixing techniques, offer a new framework for efficient non-orthogonal multiple access (NOMA) in the context of coordinated multi-user communication channels. The ensuing communication scheme is referred to as MU-SR-LDPC coding. Empirical evidence suggests that MU-SR-LDPC coding can increase the sum-rate for a fixed Eb/N0 when compared to orthogonal multiple access (OMA) techniques such as time division multiple access (TDMA) or frequency division multiple access (FDMA). Importantly, MU-SR-LDPC coding enables a pragmatic solution path for user-centric cell-free communication systems with (local) joint decoding. Results are supported by numerical simulations. 
    more » « less