skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1643355

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. We present a 2700-year annually resolved chronology and snow accumulationhistory for the Roosevelt Island Climate Evolution (RICE) ice core, Ross IceShelf, West Antarctica. The core adds information on past accumulationchanges in an otherwise poorly constrained sector of Antarctica. The timescale was constructed by identifying annual cycles inhigh-resolution impurity records, and it constitutes the top part of theRoosevelt Island Ice Core Chronology 2017 (RICE17). Validation by volcanicand methane matching to the WD2014 chronology from the WAIS Divide ice coreshows that the two timescales are in excellent agreement. In a companionpaper, gas matching to WAIS Divide is used to extend the timescale for thedeeper part of the core in which annual layers cannot be identified. Based on the annually resolved timescale, we produced a record of past snowaccumulation at Roosevelt Island. The accumulation history shows thatRoosevelt Island experienced slightly increasing accumulation rates between700 BCE and 1300 CE, with an average accumulation of 0.25±0.02 mwater equivalent (w.e.) per year. Since 1300 CE, trends in the accumulationrate have been consistently negative, with an acceleration in the rate ofdecline after the mid-17th century. The current accumulation rate atRoosevelt Island is 0.210±0.002 m w.e. yr−1 (average since 1965 CE, ±2σ), and it is rapidly declining with a trend corresponding to0.8 mm yr−2. The decline observed since the mid-1960s is 8 times fasterthan the long-term decreasing trend taking place over the previouscenturies, with decadal mean accumulation rates consistently being belowaverage. Previous research has shown a strong link between Roosevelt Islandaccumulation rates and the location and intensity of the Amundsen Sea Low,which has a significant impact on regional sea-ice extent. The decrease inaccumulation rates at Roosevelt Island may therefore be explained in termsof a recent strengthening of the ASL and the expansion of sea ice in the easternRoss Sea. The start of the rapid decrease in RICE accumulation ratesobserved in 1965 CE may thus mark the onset of significant increases inregional sea-ice extent. 
    more » « less
  2. null (Ed.)
    Abstract. Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB) from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves) has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 %) where the annual average SMB during the most recent decade (2001–2010) is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation. 
    more » « less