skip to main content


Search for: All records

Award ID contains: 1644998

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Studies of wintertime air quality in the North China Plain (NCP) show that particulate‐nitrate pollution persists despite rapid reduction in NOxemissions. This intriguing NOx‐nitrate relationship may originate from non‐linear nitrate‐formation chemistry, but it is unclear which feedback mechanisms dominate in NCP. In this study, we re‐interpret the wintertime observations of17O excess of nitrate (∆17O(NO3)) in Beijing using the GEOS‐Chem (GC) chemical transport model to estimate the importance of various nitrate‐production pathways and how their contributions change with the intensity of haze events. We also analyze the relationships between other metrics of NOychemistry and [PM2.5] in observations and model simulations. We find that the model on average has a negative bias of −0.9‰ and −36% for ∆17O(NO3) and [Ox,major] (≡ [O3] + [NO2] + [p‐NO3]), respectively, while overestimating the nitrogen oxidation ratio ([NO3]/([NO3] + [NO2])) by +0.12 in intense haze. The discrepancies become larger in more intense haze. We attribute the model biases to an overestimate of NO2‐uptake on aerosols and an underestimate in wintertime O3concentrations. Our findings highlight a need to address uncertainties related to heterogeneous chemistry of NO2in air‐quality models. The combined assessment of observations and model results suggest that N2O5uptake in aerosols and clouds is the dominant nitrate‐production pathway in wintertime Beijing, but its rate is limited by ozone under high‐NOx‐high‐PM2.5conditions. Nitrate production rates may continue to increase as long as [O3] increases despite reduction in [NOx], creating a negative feedback that reduces the effectiveness of air pollution mitigation.

     
    more » « less
  2. Abstract

    Sulfur compounds are an important constituent of particulate matter, with impacts on climate and public health. While most sulfur observed in particulate matter has been assumed to be sulfate, laboratory experiments reveal that hydroxymethanesulfonate (HMS), an adduct formed by aqueous phase chemical reaction of dissolved HCHO and SO2, may be easily misinterpreted in measurements as sulfate. Here we present observational and modeling evidence for a ubiquitous global presence of HMS. We find that filter samples collected in Shijiazhuang, China, and examined with ion chromatography within 9 days show as much as 7.6 μg m−3of HMS, while samples from Singapore examined 9–18 months after collection reveal ~0.6 μg m−3of HMS. The Shijiazhuang samples show only minor traces of HMS 4 months later, suggesting that HMS had decomposed over time during sample storage. In contrast, the Singapore samples do not clearly show a decline in HMS concentration over 2 months of monitoring. Measurements from over 150 sites, primarily derived from the IMPROVE network across the United States, suggest the ubiquitous presence of HMS in at least trace amounts as much as 60 days after collection. The degree of possible HMS decomposition in the IMPROVE observations is unknown. Using the GEOS‐Chem chemical transport model, we estimate that HMS may account for 10% of global particulate sulfur in continental surface air and over 25% in many polluted regions. Our results suggest that reducing emissions of HCHO and other volatile organic compounds may have a co‐benefit of decreasing particulate sulfur.

     
    more » « less
  3. Abstract. Acidity, defined as pH, is a central component of aqueouschemistry. In the atmosphere, the acidity of condensed phases (aerosolparticles, cloud water, and fog droplets) governs the phase partitioning ofsemivolatile gases such as HNO3, NH3, HCl, and organic acids andbases as well as chemical reaction rates. It has implications for theatmospheric lifetime of pollutants, deposition, and human health. Despiteits fundamental role in atmospheric processes, only recently has this fieldseen a growth in the number of studies on particle acidity. Even with thisgrowth, many fine-particle pH estimates must be based on thermodynamic modelcalculations since no operational techniques exist for direct measurements.Current information indicates acidic fine particles are ubiquitous, butobservationally constrained pH estimates are limited in spatial and temporalcoverage. Clouds and fogs are also generally acidic, but to a lesser degreethan particles, and have a range of pH that is quite sensitive toanthropogenic emissions of sulfur and nitrogen oxides, as well as ambientammonia. Historical measurements indicate that cloud and fog droplet pH haschanged in recent decades in response to controls on anthropogenicemissions, while the limited trend data for aerosol particles indicateacidity may be relatively constant due to the semivolatile nature of thekey acids and bases and buffering in particles. This paper reviews andsynthesizes the current state of knowledge on the acidity of atmosphericcondensed phases, specifically particles and cloud droplets. It includesrecommendations for estimating acidity and pH, standard nomenclature, asynthesis of current pH estimates based on observations, and new modelcalculations on the local and global scale. 
    more » « less
  4. null (Ed.)
    Abstract. The formation of inorganic nitrate is the main sink for nitrogenoxides (NOx = NO + NO2). Due to the importance of NOx forthe formation of tropospheric oxidants such as the hydroxyl radical (OH) andozone, understanding the mechanisms and rates of nitrate formation isparamount for our ability to predict the atmospheric lifetimes of mostreduced trace gases in the atmosphere. The oxygen isotopic composition ofnitrate (Δ17O(nitrate)) is determined by the relativeimportance of NOx sinks and thus can provide an observationalconstraint for NOx chemistry. Until recently, the ability to utilizeΔ17O(nitrate) observations for this purpose was hindered by ourlack of knowledge about the oxygen isotopic composition of ozone (Δ17O(O3)). Recent and spatially widespread observations of Δ17O(O3) motivate an updated comparison of modeled andobserved Δ17O(nitrate) and a reassessment of modeled nitrateformation pathways. Model updates based on recent laboratory studies ofheterogeneous reactions render dinitrogen pentoxide (N2O5)hydrolysis as important as NO2 + OH (both 41 %) for globalinorganic nitrate production near the surface (below 1 km altitude). Allother nitrate production mechanisms individually represent less than 6 %of global nitrate production near the surface but can be dominant locally.Updated reaction rates for aerosol uptake of NO2 result in significantreduction of nitrate and nitrous acid (HONO) formed through this pathway inthe model and render NO2 hydrolysis a negligible pathway for nitrateformation globally. Although photolysis of aerosol nitrate may haveimplications for NOx, HONO, and oxidant abundances, it does notsignificantly impact the relative importance of nitrate formation pathways.Modeled Δ17O(nitrate) (28.6±4.5 ‰)compares well with the average of a global compilation of observations (27.6±5.0 ‰) when assuming Δ17O(O3) = 26 ‰, giving confidence in the model'srepresentation of the relative importance of ozone versus HOx (= OH + HO2 + RO2) in NOx cycling and nitrate formation on theglobal scale. 
    more » « less
  5. Abstract. Air quality models have not been able to reproduce the magnitude of theobserved concentrations of fine particulate matter (PM2.5) duringwintertime Chinese haze events. The discrepancy has been at least partlyattributed to low biases in modeled sulfate production rates, due to the lackof heterogeneous sulfate production on aerosolsin the models. In this study, we explicitly implement four heterogeneous sulfate formationmechanisms into a regional chemical transport model, in addition togas-phase and in-cloud sulfate production. We compare the model results withobservations of sulfate concentrations and oxygen isotopes, Δ17O(SO42-), in the winter of 2014–2015, the latter of whichis highly sensitive to the relative importance of different sulfateproduction mechanisms. Model results suggest that heterogeneous sulfateproduction on aerosols accounts for about 20 % of sulfate production inclean and polluted conditions, partially reducing the modeled low bias insulfate concentrations. Model sensitivity studies in comparison with theΔ17O(SO42-) observations suggest that heterogeneoussulfate formation is dominated by transition metal ion-catalyzed oxidation of SO2. 
    more » « less
  6. Abstract. Discerning mechanisms of sulfate formation during fine-particle pollution (referred to as haze hereafter) in Beijing is important for understanding the rapid evolution of haze and for developing cost-effective air pollution mitigation strategies. Here we present observations of the oxygen-17 excess of PM2.5 sulfate (Δ17O(SO42−)) collected in Beijing haze from October 2014 to January 2015 to constrain possible sulfate formation pathways. Throughout the sampling campaign, the 12-hourly averaged PM2.5 concentrations ranged from 16 to 323µg m−3 with a mean of (141  ±  88 (1σ))µg m−3, with SO42− representing 8–25% of PM2.5 mass. The observed Δ17O(SO42−) varied from 0.1 to 1.6‰ with a mean of (0.9  ±  0.3)‰. Δ17O(SO42−) increased with PM2.5 levels in October 2014 while the opposite trend was observed from November 2014 to January 2015. Our estimate suggested that in-cloud reactions dominated sulfate production on polluted days (PDs, PM2.5  ≥  75µg m−3) of Case II in October 2014 due to the relatively high cloud liquid water content, with a fractional contribution of up to 68%. During PDs of Cases I and III–V, heterogeneous sulfate production (Phet) was estimated to contribute 41–54% to total sulfate formation with a mean of (48  ±  5)%. For the specific mechanisms of heterogeneous oxidation of SO2, chemical reaction kinetics calculations suggested S(IV) ( = SO2 ⚫H2O+HSO3  +  SO32−) oxidation by H2O2 in aerosol water accounted for 5–13% of Phet. The relative importance of heterogeneous sulfate production by other mechanisms was constrained by our observed Δ17O(SO42−). Heterogeneous sulfate production via S(IV) oxidation by O3 was estimated to contribute 21–22% of Phet on average. Heterogeneous sulfate production pathways that result in zero-Δ17O(SO42−), such as S(IV) oxidation by NO2 in aerosol water and/or by O2 via a radical chain mechanism, contributed the remaining 66–73% of Phet. The assumption about the thermodynamic state of aerosols (stable or metastable) was found to significantly influence the calculated aerosol pH (7.6  ±  0.1 or 4.7  ±  1.1, respectively), and thus influence the relative importance of heterogeneous sulfate production via S(IV) oxidation by NO2 and by O2. Our local atmospheric conditions-based calculations suggest sulfate formation via NO2 oxidation can be the dominant pathway in aerosols at high-pH conditions calculated assuming stable state while S(IV) oxidation by O2 can be the dominant pathway providing that highly acidic aerosols (pH ≤ 3) exist. Our local atmospheric-conditions-based calculations illustrate the utility of Δ17O(SO42−) for quantifying sulfate formation pathways, but this estimate may be further improved with future regional modeling work.

     
    more » « less
  7. Abstract. pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA) and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic) to as high as 7 (neutral). In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode) are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between −2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase) measurements as inputs (i.e., forward mode) are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5) for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid) or metastable (only liquid), does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption) resulted from coding errors in the model, which have been identified and fixed in this study.

     
    more » « less