The fundamental tradeoff between carbon gain and water loss has long been predicted as an evolutionary driver of plant strategies across environments. Nonetheless, challenges in measuring carbon gain and water loss in ways that integrate over leaf lifetime have limited our understanding of the variation in and mechanistic bases of this tradeoff. Furthermore, the microevolution of plant traits within species versus the macroevolution of strategies among closely related species may not be the same, and accordingly, the latter must be addressed using comparative phylogenetic analyses. Here we introduce the concept of ‘integrated metabolic strategy’ (IMS) to describe the ratio between carbon isotope composition ( Integrated metabolic strategy varied strongly among 20 In response to experimental decreases in soil moisture, three species maintained similar IMS across levels of water availability because of proportional increases in
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract δ 13C) and oxygen isotope composition above source water (Δ18O) of leaf cellulose. IMS is a measure of leaf‐level conditions that integrate several mechanisms contributing to carbon gain (δ 13C) and water loss (Δ18O) over leaf lifespan, with larger values reflecting higher metabolic efficiency and hence less of a tradeoff. We tested how IMS evolves among closely related yet ecologically diverse milkweed species, and subsequently addressed phenotypic plasticity in response to water availability in species with divergent IMS.Asclepias species when grown under controlled conditions, and phylogenetic analyses demonstrate species‐specific tradeoffs between carbon gain and water loss. Larger IMS values were associated with species from dry habitats, with larger carboxylation capacity, smaller stomatal conductance and smaller leaves; smaller IMS was associated with wet habitats, smaller carboxylation capacity, larger stomatal conductance and larger leaves. The evolution of IMS was dominated by changes in species’ demand for carbon (δ 13C) more so than water conservation (Δ18O). Although some individual physiological traits showed phylogenetic signal, IMS did not.δ 13C and Δ18O (or little change in either), while one species increased IMS due to disproportional changes inδ 13C relative to Δ18O.Synthesis. IMS is a broadly applicable mechanistic tool; IMS variation among and within species may shed light on unresolved questions relating to the evolution and ecology of plant ecophysiological strategies. -
For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly (
Danaus plexippus ) growth, sequestration, and oviposition when consuming tropical milkweed (Asclepias curassavica ), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring–containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch’s neural Na+/K+-ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch’s typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt. -
Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides.more » « less
-
Milkweeds are important nectar resources for insects in the New World. In addition, nectar is the germination medium for milkweed pollen. This study is the first controlled, greenhouse examination of patterns of nectar production in a milkweed species. We measured nectar volume, concentration, and mg of sugar in the pantropical, weedy milkweed Asclepias curassavica. Our results show that A. curassavica secretes nectar primarily during daylight hours and it continues at a constant daily rate for four to five days. Freshly secreted nectar is lower in sugar concentration than older nectar. This provides an opportunity for milkweed pollen to germinate throughout the day, but pollen germination could be inhibited at times when the sugar concentration increases. Nectar production in A. curassavica is adapted to attract diurnal insect pollinators over several days and to allow pollen germination to occur quickly. Significant differences in nectar production exist among plants and inflorescences within plants. Nectar production increases in flowers when nectar is extracted using paper wicks that simulate removal by insects in nature. Removal-enhanced nectar production in milkweeds may allow plants to adjust resources to inflorescences receiving insect visitation. Significant inter-plant differences in nectar production and the unique milkweed flower provides a model system for examining the role of pollinator-mediated selection on nectar traits.more » « less