Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, ransomware attacks have grown dramatically. New variants continually emerging make tracking and mitigating these threats increasingly difficult using traditional detection methods. As the landscape of ransomware evolves, there is a growing need for more advanced detection techniques. Neural networks have gained popularity as a method to enhance detection accuracy, by leveraging low-level hardware information such as hardware events as features for identifying ransomware attacks. In this paper, we investigated several state-of-the-art supervised learning models, including XGBoost, LightGBM, MLP, and CNN, which are specifically designed to handle time series data or image-based data for ransomware detection. We compared their detection accuracy, computational efficiency, and resource requirements for classification. Our findings indicate that particularly LightGBM, offer a strong balance of high detection accuracy, fast processing speed, and low memory usage, making them highly effective for ransomware detection tasks.more » « lessFree, publicly-accessible full text available November 2, 2025
-
Iris is one of the most widely used biometric modalities because of its uniqueness, high matching performance, and inherently secure nature. Iris segmentation is an essential preliminary step for iris-based biometric authentication. The authentication accuracy is directly connected with the iris segmentation accuracy. In the last few years, deep-learning-based iris segmentation methodologies have increasingly been adopted because of their ability to handle challenging segmentation tasks and their advantages over traditional segmentation techniques. However, the biggest challenge to the biometric community is the scarcity of open-source resources for adoption for application and reproducibility. This review provides a comprehensive examination of available open-source iris segmentation resources, including datasets, algorithms, and tools. In the process, we designed three U-Net and U-Net++ architecture-influenced segmentation algorithms as standard benchmarks, trained them on a large composite dataset (>45K samples), and created 1K manually segmented ground truth masks. Overall, eleven state-of-the-art algorithms were benchmarked against five datasets encompassing multiple sensors, environmental conditions, demography, and illumination. This assessment highlights the strengths, limitations, and practical implications of each method and identifies gaps that future studies should address to improve segmentation accuracy and robustness. To foster future research, all resources developed during this work would be made publicly available.more » « lessFree, publicly-accessible full text available November 1, 2025
An official website of the United States government
