Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.
more »
« less
This content will become publicly available on November 2, 2025
Proceedings of the 13th International Workshop on Hardware and Architectural Support for Security and Privacy
In recent years, ransomware attacks have grown dramatically. New variants continually emerging make tracking and mitigating these threats increasingly difficult using traditional detection methods. As the landscape of ransomware evolves, there is a growing need for more advanced detection techniques. Neural networks have gained popularity as a method to enhance detection accuracy, by leveraging low-level hardware information such as hardware events as features for identifying ransomware attacks. In this paper, we investigated several state-of-the-art supervised learning models, including XGBoost, LightGBM, MLP, and CNN, which are specifically designed to handle time series data or image-based data for ransomware detection. We compared their detection accuracy, computational efficiency, and resource requirements for classification. Our findings indicate that particularly LightGBM, offer a strong balance of high detection accuracy, fast processing speed, and low memory usage, making them highly effective for ransomware detection tasks.
more »
« less
- Award ID(s):
- 1650503
- PAR ID:
- 10577444
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400712210
- Format(s):
- Medium: X
- Location:
- Austin TX USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The unprecedented growth in mobile systems has transformed the way we approach everyday computing. Unfortunately, the emergence of a sophisticated type of malware known as ransomware poses a great threat to consumers of this technology. Traditional research on mobile malware detection has focused on approaches that rely on analyzing bytecode for uncovering malicious apps. However, cybercriminals can bypass such methods by embedding malware directly in native machine code, making traditional methods inadequate. Another challenge that detection solutions face is scalability. The sheer number of malware variants released every year makes it difficult for solutions to efficiently scale their coverage. To address these concerns, this work presents RansomShield, an energy-efficient solution that leverages CNNs to detect ransomware. We evaluate CNN architectures that have been known to perform well on computer vision tasks and examine their suitability for ransomware detection. We show that systematically converting native instructions from Android apps into images using space-filling curve visualization techniques enable CNNs to reliably detect ransomware with high accuracy. We characterize the robustness of this approach across ARM and x86 architectures and demonstrate the effectiveness of this solution across heterogeneous platforms including smartphones and chromebooks. We evaluate the suitability of different models for mobile systems by comparing their energy demands using different platforms. In addition, we present a CNN introspection framework that determines the important features that are needed for ransomware detection. Finally, we evaluate the robustness of this solution against adversarial machine learning (AML) attacks using state-of-the-art Android malware dataset.more » « less
-
Ransomware is a malware that encrypts victim's data, where the decryption key is released after a ransom is paid by the data owner to the attacker. Many ransomware attacks were reported recently, making anti-ransomware a crucial need in security operation, and an issue for the security community to tackle. In this paper, we propose a new approach to defending against ransomware inside NAND flash-based SSDs. To realize the idea of defense-inside-SSDs, both a lightweight detection technique and a perfect recovery algorithm to be used as a part of SSDs firmware should be developed. To this end, we propose a new set of lightweight behavioral features on ran-somware's overwriting pattern, which are invariant across various ransomwares. Our features rely on observing the block I/O request headers only, and not the payload. For perfect and instant recovery, we also propose using the delayed deletion feature of SSDs, which is intrinsic to NAND flash. To demonstrate their feasibility, we implement our algorithms atop an open-channel SSD as a working prototype called SSD-Insider. In experiments using eight real-world and two in-house ransomwares with various background applications running, SSD-Insider achieved a detection accuracy 0% FRR/FAR in most scenarios, and only 5% FAR when heavy overwriting resembling ransomware's data wiping occurs. SSD-Insider detects ransomware activity within 10s, and recovers instantly an infected SSD within 1s with 0% data loss. The additional software overheads incurred by the SSD-Insider is just 147 ns and 254 ns for 4-KB reads and writes, respectively, which is negligible considering NAND chip latency (50-1000 μs).more » « less
-
Recent proliferation of cryptocurrencies that allow for pseudo-anonymous transactions has resulted in a spike of various e-crime activities and, particularly, cryptocurrency payments in hacking attacks demanding ransom by encrypting sensitive user data. Currently, most hackers use Bitcoin for payments, and existing ransomware detection tools depend only on a couple of heuristics and/or tedious data gathering steps. By capitalizing on the recent advances in Topological Data Analysis, we propose a novel efficient and tractable framework to automatically predict new ransomware transactions in a ransomware family, given only limited records of past transactions. Moreover, our new methodology exhibits high utility to detect emergence of new ransomware families, that is, detecting ransomware with no past records of transactions.more » « less
-
Ransomware is increasingly prevalent in recent years. To defend against ransomware in computing devices using flash memory as external storage, existing designs extract the entire raw flash memory data to restore the external storage to a good state. However, they cannot allow a fine-grained recovery in terms of user files as raw flash memory data do not have the semantics of "files". In this work, we design FFRecovery, a new ransomware defense strategy that can support fine-grained data recovery after the attacks. Our key idea is, to recover a file corrupted by the ransomware, we can 1) restore its file system metadata via file system forensics, and 2) extract its file data via raw data extraction from the flash translation layer, and 3) assemble the corresponding file system metadata and the file data. A simple prototype of FFRecovery has been developed and some preliminary results are provided.more » « less
An official website of the United States government
