skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1650968

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nano/microrobotic swimmers have many possible biomedical applications such as drug delivery and micro-manipulation. This paper examines one of the most promising classes of these: rigid magnetic microrobots that are propelled through bulk fluid by rotation induced by a rotating magnetic field. Propulsion corresponds to steadily rotating and translating solutions of the dynamics of such microrobots that co-rotate with the magnetic field. To be observed in experiments and be amenable to steering control, such solutions must also be stable to perturbations. In this paper, we analytically derive a criterion for the stability of such steadily rotating solutions for a microrobot made of soft magnetic materials, which have a magnetization that depends on the applied field. This result generalizes previous stability criteria we obtained for microrobots with a permanent magnetization. 
    more » « less
  2. Future medical microrobots, which are likely to be simple microstructures with no actual computational intelligence on board, can be functionalized to perform targeted therapy in the body. In this paper, we describe how the properties of rotating magnetic dipole fields have the potential to enable in vivo swarm control for the popular class of magnetic microrobots that convert rotation into forward propulsion. The methods we describe can be used with swarms of batch-fabricated homogeneous microrobots, and do not require any localization information beyond what is realistically obtainable from medical images. 
    more » « less