skip to main content

Search for: All records

Award ID contains: 1651344

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on two new records: the factorization of RSA-240, a 795-bit number, and a discrete logarithm computation over a 795-bit prime field. Previous records were the factorization of RSA-768 in 2009 and a 768-bit discrete logarithm computation in 2016. Our two computations at the 795-bit level were done using the same hardware and software, and show that computing a discrete logarithm is not much harder than a factorization of the same size. Moreover, thanks to algorithmic variants and well-chosen parameters, our computations were significantly less expensive than anticipated based on previous records.
  2. Trusted Platform Module (TPM) serves as a hardwarebased root of trust that protects cryptographic keys from privileged system and physical adversaries. In this work, we perform a black-box timing analysis of TPM 2.0 devices deployed on commodity computers. Our analysis reveals that some of these devices feature secret-dependent execution times during signature generation based on elliptic curves. In particular, we discovered timing leakage on an Intel firmwarebased TPM as well as a hardware TPM. We show how this information allows an attacker to apply lattice techniques to recover 256-bit private keys for ECDSA and ECSchnorr signatures. On Intel fTPM, our key recovery succeeds after about 1,300 observations and in less than two minutes. Similarly, we extract the private ECDSA key from a hardware TPM manufactured by STMicroelectronics, which is certified at Common Criteria (CC) EAL 4+, after fewer than 40,000 observations. We further highlight the impact of these vulnerabilities by demonstrating a remote attack against a StrongSwan IPsec VPN that uses a TPM to generate the digital signatures for authentication. In this attack, the remote client recovers the server’s private authentication key by timing only 45,000 authentication handshakes via a network connection. The vulnerabilities we have uncovered emphasize the difficultymore »of correctly implementing known constant-time techniques, and show the importance of evolutionary testing and transparent evaluation of cryptographic implementations. Even certified devices that claim resistance against attacks require additional scrutiny by the community and industry, as we learn more about these attacks.« less
  3. In this paper, we compute hundreds of Bitcoin private keys and dozens of Ethereum, Ripple, SSH, and HTTPS private keys by carrying out cryptanalytic attacks against digital signatures contained in public blockchains and Internet-wide scans. The ECDSA signature algorithm requires the generation of a per-message secret nonce. If this nonce is not generated uniformly at random, an attacker can potentially exploit this bias to compute the long-term signing key. We use a lattice-based algorithm for solving the hidden number problem to efficiently compute private ECDSA keys that were used with biased signature nonces due to multiple apparent implementation vulnerabilities.
  4. We propose a proof of work protocol that computes the discrete logarithm of an element in a cyclic group. Individual provers generating proofs of work perform a distributed version of the Pollard rho algorithm. Such a protocol could capture the computational power expended to construct proof-of-work-based blockchains for a more useful purpose, as well as incentivize advances in hardware, software, or algorithms for an important cryptographic problem. We describe our proposed construction and elaborate on challenges and potential trade-offs that arise in designing a practical proof of work.
  5. The ANSI X9.17/X9.31 pseudorandom number generator design was first standardized in 1985, with variants incorporated into numerous cryptographic standards over the next three decades. The design uses timestamps together with a statically keyed block cipher to produce pseudo-random output. It has been known since 1998 that the key must remain secret in order for the output to be secure. However, neither the FIPS 140-2 standardization process nor NIST's later descriptions of the algorithm specified any process for key generation. We performed a systematic study of publicly available FIPS 140- 2 certifications for hundreds of products that implemented the ANSI X9.31 random number generator, and found twelve whose certification documents use of static, hard-coded keys in source code, leaving the implementation vulnerable to an attacker who can learn this key from the source code or binary. In order to demonstrate the practicality of such an attack, we develop a full passive decryption attack against FortiGate VPN gateway products using FortiOS v4 that recovers the private key in seconds. We measure the prevalence of this vulnerability on the visible Internet using active scans, and demonstrate state recovery and full private key recovery in the wild. Our work highlights the extent to whichmore »the validation and certification process has failed to provide even modest security guarantees.« less
  6. We survey elliptic curve implementations from several vantage points. We perform internet-wide scans for TLS on a large number of ports, as well as SSH and IPsec to measure elliptic curve support and implementation behaviors, and collect passive measurements of client curve support for TLS. We also perform active measurements to estimate server vulnerability to known attacks against elliptic curve implementations, including support for weak curves, invalid curve attacks, and curve twist attacks. We estimate that 0.77% of HTTPS hosts, 0.04% of SSH hosts, and 4.04% of IKEv2 hosts that support elliptic curves do not perform curve validity checks as specified in elliptic curve standards. We describe how such vulnerabilities could be used to construct an elliptic curve parameter downgrade attack called CurveSwap for TLS, and observe that there do not appear to be combinations of weak behaviors we examined enabling a feasible CurveSwap attack in the wild. We also analyze source code for elliptic curve implementations, and find that a number of libraries fail to perform point validation for JSON Web Encryption, and find a flaw in the Java and NSS multiplication algorithms.
  7. Intel Software Guard Extensions (SGX) allows users to perform secure computation on platforms that run untrusted software. To validate that the computation is correctly initialized and that it executes on trusted hardware, SGX supports attestation providers that can vouch for the user’s computation. Communication with these attestation providers is based on the Extended Privacy ID (EPID) protocol, which not only validates the computation but is also designed to maintain the user’s privacy. In particular, EPID is designed to ensure that the attestation provider is unable to identify the host on which the computation executes. In this work we investigate the security of the Intel implementation of the EPID protocol. We identify an implementation weakness that leaks information via a cache side channel. We show that a malicious attestation provider can use the leaked information to break the unlinkability guarantees of EPID. We analyze the leaked information using a lattice-based approach for solving the hidden number problem, which we adapt to the zero-knowledge proof in the EPID scheme, extending prior attacks on signature schemes.