Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Heat exchange between a solid material and the gas environment is critical for the heat dissipation of miniature electronic devices. In this aspect, existing experimental studies focus on non-porous structures such as solid thin films, nanotubes, and wires. In this work, the proposed two-layer model for the heat transfer coefficient (HTC) between a solid sample and the surrounding air is extended to 70-nm-thick nanoporous Si thin films that are patterned with periodic rectangular nanopores having feature sizes of 100–400 nm. The HTC values are extracted using the 3[Formula: see text] method based on AC self-heating of a suspended sample with better accuracy than steady-state measurements in some studies. The dominance of air conduction in the measured HTCs is confirmed by comparing measurements with varied sample orientations. The two-layer model, developed for nanotubes, is still found to be accurate when the nanoporous film is simply treated as a solid film in the HTC evaluation along with the radiative mean beam length as the characteristic length of the nanoporous film. This finding indicates the potential of increasing HTC by introducing ultra-fine nanoporous patterns, as guided by the two-layer model.more » « less