skip to main content


Search for: All records

Award ID contains: 1651908

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Mobile genetic elements (MGEs) are transient genetic material that can move either within a single organism's genome or between individuals or species. While historically considered “junk” DNA (i.e., deleterious or at best neutral), more recent studies reveal the potential adaptive advantages MGEs provide in lineages across the tree of life. Ciliates, a group of single‐celled microbial eukaryotes characterized by nuclear dimorphism, exemplify how epigenetic influences from MGEs shape genome architecture and patterns of molecular evolution. Ciliate nuclear dimorphism may have evolved as a response to transposon invasion and ciliates have since co‐opted transposons to carry out programmed DNA deletion. Another example of the effect of MGEs is in providing mechanisms for lateral gene transfer (LGT) from bacteria, which introduces genetic diversity and, in several cases, may drive ecological specialization in ciliates. As a third example, the integration of viral DNA, likely through transduction, provides new genetic materials and can change the way host cells defend themselves against other viral pathogens. We argue that the acquisition of MGEs through non‐Mendelian patterns of inheritance, coupled with their effects on ciliate genome architecture and persistence throughout evolutionary history, exemplify how the transmission of mobile elements should be considered a mechanism of transgenerational epigenetic inheritance.

     
    more » « less
  2. Abstract

    Testate (shell‐building) amoebae, such as the Arcellinida (Amoebozoa), are useful bioindicators for climate change. Though past work has relied on morphological analyses to characterize Arcellinida diversity, genetic analyses revealed the presence of multiple cryptic species underlying morphospecies. Here, we design and deploy Arcellinida‐specific primers for theSSUrDNAgene to assess the community composition on the molecular level in a pilot study of two samplings from a New England fen: (1) 36‐cm horizontal transects and vertical cores; and (2) 26‐m horizontal transects fractioned into four size classes (2–10, 10–35, 35–100, and 100–300 μm). Analyses of these data show the following: (1) a considerable genetic diversity within Arcellinida, much of which comes from morphospecies lacking sequences on GenBank; (2) communities characterized byDNA(i.e. active + quiescent) are distinct from those characterized byRNA(i.e. active, indicator of biomass); (3) active communities on the surface tend to be more similar to one another than to core communities, despite considerable heterogeneity; and (4) analyses of communities fractioned by size find some lineages (OTUs) that are abundant in disjunct size categories, suggesting the possibility of life‐history stages. Together, these data demonstrate the potential of these primers to elucidate the diversity of Arcellinida communities in diverse habitats.

     
    more » « less
  3. Abstract

    John Tyler Bonner's call to re‐evaluate evolutionary theory in light of major transitions in life on Earth (e.g., from the first origins of microbial life to the evolution of sex, and the origins of multicellularity) resonate with recent discoveries on epigenetics and the concept of the hologenome. Current studies of genome evolution often mistakenly focus only on the inheritance of DNA between parent and offspring. These are in line with the widely accepted Neo‐Darwinian framework that pairs Mendelian genetics with an emphasis on natural selection as explanations for the evolution of biodiversity on Earth. Increasing evidence for widespread symbioses complicates this narrative, as is seen in Scott Gilbert's discussion of the concept of the holobiont in this series: Organisms across the tree of life coexist with substantial influence on one another through endosymbiosis, symbioses, and host‐associated microbiomes. The holobiont theory, coupled with observations from molecular studies, also requires us to understand genomes in a new way—by considering the interactions underlain by the genome of a host plus its associated microbes, a conglomerate entity referred to as the hologenome. We argue that the complex patterns of inheritance of these genomes coupled with the influence of symbionts on host gene expression make the concept of the hologenome an epigenetic phenomenon. We further argue that the aspects of the hologenome challenge of the modern evolutionary synthesis, which requires updating to remain consistent with Darwin's intent of providing natural laws that underlie the evolution of life on Earth.

     
    more » « less
  4. Orive, Maria (Ed.)
    Abstract Through analyses of diverse microeukaryotes, we have previously argued that eukaryotic genomes are dynamic systems that rely on epigenetic mechanisms to distinguish germline (i.e., DNA to be inherited) from soma (i.e., DNA that undergoes polyploidization, genome rearrangement, etc.), even in the context of a single nucleus. Here, we extend these arguments by including two well-documented observations: (1) eukaryotic genomes interact frequently with mobile genetic elements (MGEs) like viruses and transposable elements (TEs), creating genetic conflict, and (2) epigenetic mechanisms regulate MGEs. Synthesis of these ideas leads to the hypothesis that genetic conflict with MGEs contributed to the evolution of a dynamic eukaryotic genome in the last eukaryotic common ancestor (LECA), and may have contributed to eukaryogenesis (i.e., may have been a driver in the evolution of FECA, the first eukaryotic common ancestor). Sex (i.e., meiosis) may have evolved within the context of the development of germline–soma distinctions in LECA, as this process resets the germline genome by regulating/eliminating somatic (i.e., polyploid, rearranged) genetic material. Our synthesis of these ideas expands on hypotheses of the origin of eukaryotes by integrating the roles of MGEs and epigenetics. 
    more » « less
  5. Archibald, John (Ed.)
    Abstract Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit. 
    more » « less