skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1652131

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. We present FLASH (F ast L SH A lgorithm for S imilarity search accelerated with H PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results. 
    more » « less
  4. Anomaly detection is one of the frequent and important subroutines deployed in large-scale data processing applications. Even being a well-studied topic, existing techniques for unsupervised anomaly detection require storing significant amounts of data, which is prohibitive from memory, latency and privacy perspectives, especially for small mobile devices which has ultra-low memory budget and limited computational power. In this paper, we propose ACE (Arrays of (locality-sensitive) Count Estimators) algorithm that can be 60x faster than most state-of-the-art unsupervised anomaly detection algorithms. In addition, ACE has appealing privacy properties. Our experiments show that ACE algorithm has significantly smaller memory footprints (∠ 4MB in our experiments) which can exploit Level 3 cache of any modern processor. At the core of the ACE algorithm, there is a novel statistical estimator which is derived from the sampling view of Locality Sensitive Hashing (LSH). This view is significantly different and efficient than the widely popular view of LSH for near-neighbor search. We show the superiority of ACE algorithm over 11 popular baselines on 3 benchmark datasets, including the KDD-Cup99 data which is the largest available public benchmark comprising of more than half a million entries with ground truth anomaly labels. 
    more » « less
  5. WTA (Winner Take All) hashing has been successfully applied in many large-scale vision applications. This hashing scheme was tailored to take advantage of the comparative reasoning (or order based information), which showed significant accuracy improvements. In this paper, we identify a subtle issue with WTA, which grows with the sparsity of the datasets. This issue limits the discriminative power of WTA. We then propose a solution to this problem based on the idea of Densification which makes use of 2-universal hash functions in a novel way. Our experiments show that Densified WTA Hashing outperforms Vanilla WTA Hashing both in image retrieval and classification tasks consistently and significantly 
    more » « less
  6. Current deep learning architectures are growing larger in order to learn from complex datasets. These architectures require giant matrix multiplication operations to train millions of parameters. Conversely, there is another growing trend to bring deep learning to low-power, embedded devices. The matrix operations, associated with the training and testing of deep networks, are very expensive from a computational and energy standpoint. We present a novel hashing-based technique to drastically reduce the amount of computation needed to train and test neural networks. Our approach combines two recent ideas, Adaptive Dropout and Randomized Hashing for Maximum Inner Product Search (MIPS), to select the nodes with the highest activations efficiently. Our new algorithm for deep learning reduces the overall computational cost of the forward and backward propagation steps by operating on significantly fewer nodes. As a consequence, our algorithm uses only 5% of the total multiplications, while keeping within 1% of the accuracy of the original model on average. A unique property of the proposed hashing-based back-propagation is that the updates are always sparse. Due to the sparse gradient updates, our algorithm is ideally suited for asynchronous, parallel training, leading to near-linear speedup, as the number of cores increases. We demonstrate the scalability and sustainability (energy efficiency) of our proposed algorithm via rigorous experimental evaluations on several datasets. 
    more » « less