We develop a distributed-memory parallel algorithm for performing batch updates on streaming graphs, where vertices and edges are continuously added or removed. Our algorithm leverages distributed sparse matrices as the core data structures, utilizing equivalent sparse matrix operations to execute graph updates. By reducing unnecessary communication among processes and employing shared-memory parallelism, we accelerate updates of distributed graphs. Additionally, we maintain a balanced load in the output matrix by permuting the resultant matrix during the update process. We demonstrate that our streaming update algorithm is at least 25 times faster than alternative linear-algebraic methods and scales linearly up to 4,096 cores (32 nodes) on a Cray EX supercomputer.
more »
« less
Scalable and Sustainable Deep Learning via Randomized Hashing
Current deep learning architectures are growing larger in order to learn from complex datasets. These architectures require giant matrix multiplication operations to train millions of parameters. Conversely, there is another growing trend to bring deep learning to low-power, embedded devices. The matrix operations, associated with the training and testing of deep networks, are very expensive from a computational and energy standpoint. We present a novel hashing-based technique to drastically reduce the amount of computation needed to train and test neural networks. Our approach combines two recent ideas, Adaptive Dropout and Randomized Hashing for Maximum Inner Product Search (MIPS), to select the nodes with the highest activations efficiently. Our new algorithm for deep learning reduces the overall computational cost of the forward and backward propagation steps by operating on significantly fewer nodes. As a consequence, our algorithm uses only 5% of the total multiplications, while keeping within 1% of the accuracy of the original model on average. A unique property of the proposed hashing-based back-propagation is that the updates are always sparse. Due to the sparse gradient updates, our algorithm is ideally suited for asynchronous, parallel training, leading to near-linear speedup, as the number of cores increases. We demonstrate the scalability and sustainability (energy efficiency) of our proposed algorithm via rigorous experimental evaluations on several datasets.
more »
« less
- Award ID(s):
- 1652131
- PAR ID:
- 10066082
- Date Published:
- Journal Name:
- Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
- Page Range / eLocation ID:
- 445 to 454
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spiking neural networks (SNNs) well support spatio-temporal learning and energy-efficient event-driven hardware neuromorphic processors. As an important class of SNNs, recurrent spiking neural networks (RSNNs) possess great computational power. However, the practical application of RSNNs is severely limited by challenges in training. Biologically-inspired unsupervised learning has limited capability in boosting the performance of RSNNs. On the other hand, existing backpropagation (BP) methods suffer from high complexity of unfolding in time, vanishing and exploding gradients, and approximate differentiation of discontinuous spiking activities when applied to RSNNs. To enable supervised training of RSNNs under a well-defined loss function, we present a novel Spike-Train level RSNNs Backpropagation (ST-RSBP) algorithm for training deep RSNNs. The proposed ST-RSBP directly computes the gradient of a rate-coded loss function defined at the output layer of the network w.r.t tunable parameters. The scalability of ST-RSBP is achieved by the proposed spike-train level computation during which temporal effects of the SNN is captured in both the forward and backward pass of BP. Our ST-RSBP algorithm can be broadly applied to RSNNs with a single recurrent layer or deep RSNNs with multiple feedforward and recurrent layers. Based upon challenging speech and image datasets including TI46, N-TIDIGITS, Fashion-MNIST and MNIST, ST-RSBP is able to train SNNs with an accuracy surpassing that of the current state-of-the-art SNN BP algorithms and conventional non-spiking deep learning models.more » « less
-
Spiking neural networks (SNNs) have received increasing attention due to their high biological plausibility and energy efficiency. The binary spike-based information propagation enables efficient sparse computation in event-based and static computer vision applications. However, the weight precision and especially the membrane potential precision remain as high-precision values (e.g., 32 bits) in state-of-the-art SNN algorithms. Each neuron in an SNN stores the membrane potential over time and typically updates its value in every time step. Such frequent read/write operations of high-precision membrane potential incur storage and memory access overhead in SNNs, which undermines the SNNs' compatibility with resource-constrained hardware. To resolve this inefficiency, prior works have explored the time step reduction and low-precision representation of membrane potential at a limited scale and reported significant accuracy drops. Furthermore, while recent advances in on-device AI present pruning and quantization optimization with different architectures and datasets, simultaneous pruning with quantization is highly under-explored in SNNs. In this work, we present SpQuant-SNN, a fully-quantized spiking neural network with ultra-low precision weights, membrane potential, and high spatial-channel sparsity, enabling the end-to-end low precision with significantly reduced operations on SNN. First, we propose an integer-only quantization scheme for the membrane potential with a stacked surrogate gradient function, a simple-yet-effective method that enables the smooth learning process of quantized SNN training. Second, we implement spatial-channel pruning with membrane potential prior, toward reducing the layer-wise computational complexity, and floating-point operations (FLOPs) in SNNs. Finally, to further improve the accuracy of low-precision and sparse SNN, we propose a self-adaptive learnable potential threshold for SNN training. Equipped with high biological adaptiveness, minimal computations, and memory utilization, SpQuant-SNN achieves state-of-the-art performance across multiple SNN models for both event-based and static image datasets, including both image classification and object detection tasks. The proposed SpQuant-SNN achieved up to 13× memory reduction and >4.7× FLOPs reduction with ~1.8% accuracy degradation for both classification and object detection tasks, compared to the SOTA baseline.more » « less
-
Jihe Wang, Yi He (Ed.)Influence propagation is a network phenomenon governing how information is diffused in a network. With the advent of deep learning, there has been growing interest in applying graph neural networks to extract salient feature representation of the nodes for a variety of network mining tasks, such as forecasting the virality of information cascade. Given the importance of social influence, this paper presents a novel deep learning framework called IP-GNN for simulating the information propagation process in a complex network and learning a node representation that embeds information about the diffusion process under the linear threshold model. Our framework employs a modified graph convolutional network architecture with adaptive diffusion kernel to capture long-range propagation of information along with an entropy-regularized mixture of loss functions to ensure accurate prediction and faster convergence of the learning algorithm. Experimental results on 4 real-world datasets show that the model accurately mimics the output of the linear threshold model, achieving an average accuracy that exceeds 90\% on all datasets.more » « less
-
The record-breaking performance of deep neural networks (DNNs) comes with heavy parameter budgets, which leads to external dynamic random access memory (DRAM) for storage. The prohibitive energy of DRAM accesses makes it nontrivial for DNN deployment on resource-constrained devices, calling for minimizing the movements of weights and data in order to improve the energy efficiency. Driven by this critical bottleneck, we present SmartDeal, a hardware-friendly algorithm framework to trade higher-cost memory storage/access for lower-cost computation, in order to aggressively boost the storage and energy efficiency, for both DNN inference and training. The core technique of SmartDeal is a novel DNN weight matrix decomposition framework with respective structural constraints on each matrix factor, carefully crafted to unleash the hardware-aware efficiency potential. Specifically, we decompose each weight tensor as the product of a small basis matrix and a large structurally sparse coefficient matrix whose nonzero elements are readily quantized to the power-of-2. The resulting sparse and readily quantized DNNs enjoy greatly reduced energy consumption in data movement as well as weight storage, while incurring minimal overhead to recover the original weights thanks to the required sparse bit-operations and cost-favorable computations. Beyond inference, we take another leap to embrace energy-efficient training, by introducing several customized techniques to address the unique roadblocks arising in training while preserving the SmartDeal structures. We also design a dedicated hardware accelerator to fully utilize the new weight structure to improve the real energy efficiency and latency performance. We conduct experiments on both vision and language tasks, with nine models, four datasets, and three settings (inference-only, adaptation, and fine-tuning). Our extensive results show that 1) being applied to inference, SmartDeal achieves up to 2.44x improvement in energy efficiency as evaluated using real hardware implementations and 2) being applied to training, SmartDeal can lead to 10.56x and 4.48x reduction in the storage and the training energy cost, respectively, with usually negligible accuracy loss, compared to state-of-the-art training baselines. Our source codes are available at: https://github.com/VITA-Group/SmartDeal.more » « less
An official website of the United States government

