skip to main content


Search for: All records

Award ID contains: 1652132

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a framework to enable the energy-efficient execution of convolutional neural networks (CNNs) on edge devices. The framework consists of a pair of edge devices connected via a wireless network: a performance and energy-constrained device D as the first recipient of data, and an energy-unconstrained device N as an accelerator for D. Device D decides on-the-fly how to distribute the workload with the objective of minimizing its energy consumption while accounting for the inherent uncertainty in network delay and the overheads involved in data transfer. These challenges are tackled by adopting the data-driven modeling framework of Markov Decision Processes (MDP), whereby an optimal policy is consulted by D in O(1) time to make layer-by-layer assignment decisions. As a special case, a linear-time dynamic programming algorithm is also presented for finding optimal layer assignment at once, under the assumption that the network delay is constant throughout the execution of the application. The proposed framework is demonstrated on a platform comprised of a Raspberry PI 3 as D and an NVIDIA Jetson TX2 as N. An average improvement of 31% and 23% in energy consumption is achieved compared to the alternatives of executing the CNNs entirely on D and N. Two state-of-the-art methods were also implemented, and compared with the proposed methods. 
    more » « less
  2. Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movement. Many researchers advocate pushing processing close to the sensor to substantially reduce data movement. However, continuous near-sensor processing raises sensor temperature, impairing imaging/vision fidelity. We characterize the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. Our characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, our characterization also identifies opportunities—unique to the needs of near-sensor processing—to regulate temperature based on dynamic visual task requirements and rapidly increase capture quality on demand. Based on our characterization, we propose and investigate two thermal management strategies—stop-capture-go and seasonal migration—for imaging-aware thermal management. For our evaluated tasks, our policies save up to 53% of system power with negligible performance impact and sustained image fidelity. 
    more » « less
  3. null (Ed.)
    GPUs are a key enabler of the revolution in machine learning and high-performance computing, functioning as de facto co-processors to accelerate large-scale computation. As the programming stack and tool support have matured, GPUs have also become accessible to programmers, who may lack detailed knowledge of the underlying architecture and fail to fully leverage the GPU’s computation power. GEVO (Gpu optimization using EVOlutionary computation) is a tool for automatically discovering optimization opportunities and tuning the performance of GPU kernels in the LLVM representation. GEVO uses population-based search to find edits to GPU code compiled to LLVM-IR and improves performance on desired criteria while retaining required functionality. We demonstrate that GEVO improves the execution time of general-purpose GPU programs and machine learning (ML) models on NVIDIA Tesla P100. For the Rodinia benchmarks, GEVO improves GPU kernel runtime performance by an average of 49.48% and by as much as 412% over the fully compiler-optimized baseline. If kernel output accuracy is relaxed to tolerate up to 1% error, GEVO can find kernel variants that outperform the baseline by an average of 51.08%. For the ML workloads, GEVO achieves kernel performance improvement for SVM on the MNIST handwriting recognition (3.24×) and the a9a income prediction (2.93×) datasets with no loss of model accuracy. GEVO achieves 1.79× kernel performance improvement on image classification using ResNet18/CIFAR-10, with less than 1% model accuracy reduction. 
    more » « less