skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Temperature Management of Near-Sensor Processing for Energy-Efficient High-Fidelity Imaging
Vision processing on traditional architectures is inefficient due to energy-expensive off-chip data movement. Many researchers advocate pushing processing close to the sensor to substantially reduce data movement. However, continuous near-sensor processing raises sensor temperature, impairing imaging/vision fidelity. We characterize the thermal implications of using 3D stacked image sensors with near-sensor vision processing units. Our characterization reveals that near-sensor processing reduces system power but degrades image quality. For reasonable image fidelity, the sensor temperature needs to stay below a threshold, situationally determined by application needs. Fortunately, our characterization also identifies opportunities—unique to the needs of near-sensor processing—to regulate temperature based on dynamic visual task requirements and rapidly increase capture quality on demand. Based on our characterization, we propose and investigate two thermal management strategies—stop-capture-go and seasonal migration—for imaging-aware thermal management. For our evaluated tasks, our policies save up to 53% of system power with negligible performance impact and sustained image fidelity.  more » « less
Award ID(s):
1652132
PAR ID:
10396353
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
21
Issue:
3
ISSN:
1424-8220
Page Range / eLocation ID:
926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Energy-efficient visual sensing is of paramount importance to enable battery-backed low power IoT and mobile applications. Unfortunately, modern image sensors still consume hundreds of milliwatts of power, mainly due to analog readout. This is because current systems always supply a fixed voltage to the sensor’s analog circuitry, leading to higher power profiles. In this work, we propose to aggressively scale the analog voltage supplied to the camera as a means to significantly reduce sensor power consumption. To that end, we characterize the power and fidelity implications of analog voltage scaling on three off-the-shelf image sensors. Our characterization reveals that analog voltage scaling reduces sensor power but also degrades image quality. Furthermore, the degradation in image quality situationally affects the task accuracy of vision applications. We develop a visual streaming pipeline that flexibly allows application developers to dynamically adapt sensor voltage on a frame-by-frame basis. We develop a voltage controller that programmatically generates desired sensor voltage based on application request. We integrate our voltage controller into the existing RPi-based video streaming IoT pipeline. On top of this, we develop runtime support for flexible voltage specification from vision applications. Evaluating the system over a wide range of voltage scaling policies on popular vision tasks reveals that Squint imaging can deliver up to 73% sensor power savings, while maintaining reasonable task fidelity. Our artifacts are available at: https://gitlab.com/squint1/squint-ae-public 
    more » « less
  2. Advances in vision processing have ignited a proliferation of mobile vision applications, including augmented reality. However, limited by the inability to rapidly reconfigure sensor operation for performance-efficiency tradeoffs, high power consumption causes vision applications to drain the device's battery. To explore the potential impact of enabling rapid reconfiguration, we use a case study around marker-based pose estimation to understand the relationship between image frame resolution, task accuracy, and energy efficiency. Our case study motivates that to balance energy efficiency and task accuracy, the application needs to dynamically and frequently reconfigure sensor resolution. To explore the latency bottlenecks to sensor resolution reconfiguration, we define and profile the end-to-end reconfiguration latency and frame-to-frame latency of changing capture resolution on a Google LG Nexus 5X device. We identify three major sources of sensor resolution reconfiguration latency in current Android systems: (i) sequential configuration patterns, (ii) expensive system calls, and (iii) imaging pipeline delay. Based on our intuitions, we propose a redesign of the Android camera system to mitigate the sources of latency. Enabling smooth transitions between sensor configurations will unlock new classes of adaptive-resolution vision applications. 
    more » « less
  3. Abstract Conventional imaging and recognition systems require an extensive amount of data storage, pre-processing, and chip-to-chip communications as well as aberration-proof light focusing with multiple lenses for recognizing an object from massive optical inputs. This is because separate chips (i.e., flat image sensor array, memory device, and CPU) in conjunction with complicated optics should capture, store, and process massive image information independently. In contrast, human vision employs a highly efficient imaging and recognition process. Here, inspired by the human visual recognition system, we present a novel imaging device for efficient image acquisition and data pre-processing by conferring the neuromorphic data processing function on a curved image sensor array. The curved neuromorphic image sensor array is based on a heterostructure of MoS2and poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane). The curved neuromorphic image sensor array features photon-triggered synaptic plasticity owing to its quasi-linear time-dependent photocurrent generation and prolonged photocurrent decay, originated from charge trapping in the MoS2-organic vertical stack. The curved neuromorphic image sensor array integrated with a plano-convex lens derives a pre-processed image from a set of noisy optical inputs without redundant data storage, processing, and communications as well as without complex optics. The proposed imaging device can substantially improve efficiency of the image acquisition and recognition process, a step forward to the next generation machine vision. 
    more » « less
  4. null (Ed.)
    We introduce DeepIR, a new thermal image processing framework that combines physically accurate sensor modeling with deep network-based image representation. Our key enabling observations are that the images captured by thermal sensors can be factored into slowly changing, scene-independent sensor non-uniformities (that can be accurately modeled using physics) and a scene-specific radiance flux (that is well-represented using a deep network-based regularizer). DeepIR requires neither training data nor periodic ground-truth calibration with a known black body target--making it well suited for practical computer vision tasks. We demonstrate the power of going DeepIR by developing new denoising and super-resolution algorithms that exploit multiple images of the scene captured with camera jitter. Simulated and real data experiments demonstrate that DeepIR can perform high-quality non-uniformity correction with as few as three images, achieving a 10dB PSNR improvement over competing approaches. 
    more » « less
  5. We introduce DeepIR, a new thermal image processing framework that combines physically accurate sensor modeling with deep network-based image representation. Our key enabling observations are that the images captured by thermal sensors can be factored into slowly changing, scene-independent sensor non-uniformities (that can be accurately modeled using physics) and a scene-specific radiance flux (that is well-represented using a deep network-based regularizer). DeepIR requires neither training data nor periodic ground-truth calibration with a known black body target--making it well suited for practical computer vision tasks. We demonstrate the power of going DeepIR by developing new denoising and super-resolution algorithms that exploit multiple images of the scene captured with camera jitter. Simulated and real data experiments demonstrate that DeepIR can perform high-quality non-uniformity correction with as few as three images, achieving a 10dB PSNR improvement over competing approaches. 
    more » « less