Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract AimAccounting for biotic interactions in species distribution models is complicated by the fact that interactions occur at the individual‐level at unknown spatial scales. Standard approaches that ignore individual‐level interactions and focus on aggregate scales are subject to the modifiable aerial unit problem (MAUP) in which incorrect inferences may arise about the sign and magnitude of interspecific effects. LocationGlobal (simulation) and North Carolina, United States (case study). TaxonNone (simulation) and Aves (case study). MethodsWe present a hierarchical species distribution model that includes a Markov point process in which the locations of individuals of one species are modelled as a function of both abiotic variables and the locations of individuals of another species. We applied the model to spatial capture‐recapture (SCR) data on two ecologically similar songbird species—hooded warbler (Setophaga citrina) and black‐throated blue warbler (Setophaga caerulescens)—that segregate over a climate gradient in the southern Appalachian Mountains, USA. ResultsA simulation study indicated that the model can identify the effects of environmental variation and biotic interactions on co‐occurring species distributions. In the case study, there were strong and opposing effects of climate on spatial variation in population densities, but spatial competition did not influence the two species' distributions. Main ConclusionsUnlike existing species distribution models, the framework proposed here overcomes the MAUP and can be used to investigate how population‐level patterns emerge from individual‐level processes, while also allowing for inference on the spatial scale of biotic interactions. Our finding of minimal spatial competition between black‐throated blue warbler and hooded warbler adds to the growing body of literature suggesting that abiotic factors may be more important than competition at low‐latitude range margins. The model can be extended to accommodate count data and binary data in addition to SCR data.more » « less
-
Abstract The abiotic range limitation hypothesis states that species distributions are shaped by physiological constraints imposed by temperature and precipitation. To test this hypothesis, we assessed the impacts of climate on hatch rates by reciprocally translocating complete clutches of both Setophaga caerulescens (Black-throated Blue Warbler) and S. citrina (Hooded Warblers) across a local range boundary of S. caerulescens in the southern Appalachian Mountains. The S. caerulescens population occurs at the trailing edge of its breeding range, whereas the S. citrina population occurs near the core of its range. The hatching probability of S. caerulescens eggs declined from 0.93 ± 0.02 to 0.60 ± 0.07 when moved to S. citrina nests in warmer conditions. Translocation, however, had little effect on hatching probability of S. citrina eggs when moved to S. caerulescens nests in cooler environments. Thirteen reciprocal clutch translocations were performed; 17 clutches were moved as controls; and 49 nests were not manipulated. We monitored species-specific incubation behavior, measured microclimate conditions inside and outside nests using hygrochron iButtons, and examined the effects of temperature and humidity on nestling growth rates. Higher ambient temperatures had a greater effect on hatching probability than did humidity, but we were unable to determine if reduced hatching was caused by changes in temperature, humidity, or their interaction. We suggest that, in warmer conditions, S. caerulescens eggs in S. citrina nests may have been unable to cool sufficiently to avoid excessive water loss due to higher ambient temperatures but not a difference in relative humidity. Our finding that hatch rates of S. caerulescens declined when translocated to warmer conditions supports the hypothesis that distributions of trailing-edge populations are limited in part by climate effects on reproductive rates.more » « less
-
Abstract PurposeTrailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal. MethodsWe fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations. ResultsMedian dispersal distance of young warblers was 917 m (range 23–3200 m), and dispersal tended to be directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding seasons and rarely dispersed more than 100 m (range 10–1300 m). Consequently, adult dispersal kernels were much more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force of declines in this population. ConclusionOur findings suggest that directional natal dispersal may mitigate fitness costs for trailing-edge populations by allowing individuals to track changing climate and avoid warming conditions at warm-edge range boundaries.more » « less
-
ABSTRACT Many populations near receding low-latitude range: margins are declining in response to climate change, but most studies of trailing-edge populations have focused on single species. Using 10 years (2014–2023) of avian survey data from a high-elevation trailing-edge population hotspot in the Appalachian Mountains, USA, we tested the hypothesis that high-elevation communities would experience turnover through thermophilization, as warm-adapted species near the center of their geographic ranges expand into regions formerly dominated by peripheral populations of cool-adapted species. Three of the nine cool-adapted, peripheral populations decreased in abundance, and whereas 6 species exhibited little change. For warm-adapted populations near the core of their range, 1 of 16 decreased in abundance, 11 increased, and 4 exhibited no change. Within the most abundant species in this community, our results indicate that warm-adapted species are expanding their ranges faster than the rate at which ranges of cool-adapted species are contracting. Avoiding future community turnover may require conservation strategies that maintain microclimates for cool-adapted species facing novel abiotic and biotic conditions at high elevations.more » « less
-
Abstract Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long‐term demography dataset for the black‐throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low‐elevation plot became locally extinct by 2017. The local population at the mid‐elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid‐elevation plot, although results were more equivocal at the low‐elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low‐elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor‐quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate‐mediated range shift hypothesis. Local populations of black‐throated blue warblers near the warm‐edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.more » « less
-
Abstract Understanding how climate change impacts trailing‐edge populations requires information about how abiotic and biotic factors limit their distributions. Theory indicates that socially mediated Allee effects can limit species distributions by suppressing growth rates of peripheral populations when social information is scarce.The goal of our research was to determine if socially mediated Allee effects limit the distribution of Canada warblerCardellina canadensisat the trailing‐edge of the geographic range.Using 4 years of observational data from 71 sites and experimental data at 10 sites, we tested two predictions of the socially mediated range limitation hypothesis: (a) local growth rates should be positively correlated with local density and (b) the addition of social cues immediately outside the trailing‐edge range boundary would result in colonization of formerly unoccupied habitat and increased growth rates. During the third breeding season, social cues were experimentally added at 10 formerly unoccupied sites within and beyond the species’ local range margin to determine if the addition of social information could increase density and effectively expand the species’ range.No experimental sites were colonized after adding social cues and no evidence of Allee effects was found. Rather, temperature, precipitation and negative density dependence strongly influenced population growth rates.Although theoretical models indicate that the presence of socially mediated Allee effects at species range boundaries could increase the rate of climate‐induced range shifts and local extinctions, empirical results from the first test of this hypothesis suggest that Allee effects play a minimal role in limiting species’ distributions.more » « less
An official website of the United States government
