Abstract PurposeTrailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal. MethodsWe fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations. ResultsMedian dispersal distance of young warblers was 917 m (range 23–3200 m), and dispersal tended to be directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding seasons and rarely dispersed more than 100 m (range 10–1300 m). Consequently, adult dispersal kernels were much more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force of declines in this population. ConclusionOur findings suggest that directional natal dispersal may mitigate fitness costs for trailing-edge populations by allowing individuals to track changing climate and avoid warming conditions at warm-edge range boundaries.
more »
« less
Individual‐level biotic interactions and species distribution models
Abstract AimAccounting for biotic interactions in species distribution models is complicated by the fact that interactions occur at the individual‐level at unknown spatial scales. Standard approaches that ignore individual‐level interactions and focus on aggregate scales are subject to the modifiable aerial unit problem (MAUP) in which incorrect inferences may arise about the sign and magnitude of interspecific effects. LocationGlobal (simulation) and North Carolina, United States (case study). TaxonNone (simulation) and Aves (case study). MethodsWe present a hierarchical species distribution model that includes a Markov point process in which the locations of individuals of one species are modelled as a function of both abiotic variables and the locations of individuals of another species. We applied the model to spatial capture‐recapture (SCR) data on two ecologically similar songbird species—hooded warbler (Setophaga citrina) and black‐throated blue warbler (Setophaga caerulescens)—that segregate over a climate gradient in the southern Appalachian Mountains, USA. ResultsA simulation study indicated that the model can identify the effects of environmental variation and biotic interactions on co‐occurring species distributions. In the case study, there were strong and opposing effects of climate on spatial variation in population densities, but spatial competition did not influence the two species' distributions. Main ConclusionsUnlike existing species distribution models, the framework proposed here overcomes the MAUP and can be used to investigate how population‐level patterns emerge from individual‐level processes, while also allowing for inference on the spatial scale of biotic interactions. Our finding of minimal spatial competition between black‐throated blue warbler and hooded warbler adds to the growing body of literature suggesting that abiotic factors may be more important than competition at low‐latitude range margins. The model can be extended to accommodate count data and binary data in addition to SCR data.
more »
« less
- PAR ID:
- 10516564
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Biogeography
- Volume:
- 51
- Issue:
- 11
- ISSN:
- 0305-0270
- Format(s):
- Medium: X Size: p. 2071-2083
- Size(s):
- p. 2071-2083
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The abiotic range limitation hypothesis states that species distributions are shaped by physiological constraints imposed by temperature and precipitation. To test this hypothesis, we assessed the impacts of climate on hatch rates by reciprocally translocating complete clutches of both Setophaga caerulescens (Black-throated Blue Warbler) and S. citrina (Hooded Warblers) across a local range boundary of S. caerulescens in the southern Appalachian Mountains. The S. caerulescens population occurs at the trailing edge of its breeding range, whereas the S. citrina population occurs near the core of its range. The hatching probability of S. caerulescens eggs declined from 0.93 ± 0.02 to 0.60 ± 0.07 when moved to S. citrina nests in warmer conditions. Translocation, however, had little effect on hatching probability of S. citrina eggs when moved to S. caerulescens nests in cooler environments. Thirteen reciprocal clutch translocations were performed; 17 clutches were moved as controls; and 49 nests were not manipulated. We monitored species-specific incubation behavior, measured microclimate conditions inside and outside nests using hygrochron iButtons, and examined the effects of temperature and humidity on nestling growth rates. Higher ambient temperatures had a greater effect on hatching probability than did humidity, but we were unable to determine if reduced hatching was caused by changes in temperature, humidity, or their interaction. We suggest that, in warmer conditions, S. caerulescens eggs in S. citrina nests may have been unable to cool sufficiently to avoid excessive water loss due to higher ambient temperatures but not a difference in relative humidity. Our finding that hatch rates of S. caerulescens declined when translocated to warmer conditions supports the hypothesis that distributions of trailing-edge populations are limited in part by climate effects on reproductive rates.more » « less
-
The Kirtland's warbler (Setophaga kirtlandi) is a rare migratory passerine species and habitat specialist of the North American Jack Pine Forests. Their near extinction in the 1970s classified them as endangered and protected under the Endangered Species Act of 1973. After decades of intense conservation management, their population size recovered, and they were delisted from federal protection in 2019. We explore the genomic consequences of this harsh bottleneck and recovery by comparing the genomic architecture of two closely related species whose population sizes have remained large and stable, Hooded Warblers (Setophaga citrina) and American Redstarts (Setophaga ruticilla). We used whole‐genome sequencing to characterize the distribution of runs of homozygosity and deleterious genetic variation. We find evidence that Kirtland's warblers exhibit genetic patterns consistent with recent inbreeding. Our results also show that Kirtland's warblers carry an excess proportion of deleterious variation, which could complicate management for this conservation‐reliant species. This analysis provides a genetically informed perspective that should be thoroughly considered when delisting other species from federal protections. Through the increasing accessibility of genome sequencing technology, it will be more feasible to monitor the genetic landscape of recovering populations to ensure their long‐term survival independent of conservation intervention.more » « less
-
Abstract Numerous modelling techniques exist to estimate abundance of plant and animal populations. The most accurate methods account for multiple complexities found in ecological data, such as observational biases, spatial autocorrelation, and species correlations. There is, however, a lack of user‐friendly and computationally efficient software to implement the various models, particularly for large data sets.We developed thespAbundance Rpackage for fitting spatially explicit Bayesian single‐species and multi‐species hierarchical distance sampling models, N‐mixture models, and generalized linear mixed models. The models within the package can account for spatial autocorrelation using Nearest Neighbour Gaussian Processes and accommodate species correlations in multi‐species models using a latent factor approach, which enables model fitting for data sets with large numbers of sites and/or species.We provide three vignettes and three case studies that highlightspAbundancefunctionality. We used spatially explicit multi‐species distance sampling models to estimate density of 16 bird species in Florida, USA, an N‐mixture model to estimate black‐throated blue warbler (Setophaga caerulescens) abundance in New Hampshire, USA, and a spatial linear mixed model to estimate forest above‐ground biomass across the continental USA.spAbundanceprovides a user‐friendly, formula‐based interface to fit a variety of univariate and multivariate spatially explicit abundance models. The package serves as a useful tool for ecologists and conservation practitioners to generate improved inference and predictions on the spatial drivers of abundance in populations and communities.more » « less
-
Abstract AimSpecies distribution models (SDMs) are increasingly applied across macroscales using detection‐nondetection data. These models typically assume that a single set of regression coefficients can adequately describe species–environment relationships and/or population trends. However, such relationships often show nonlinear and/or spatially varying patterns that arise from complex interactions with abiotic and biotic processes that operate at different scales. Spatially varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Yet, their use in ecology is relatively scarce due to gaps in understanding the inferential benefits that SVC models can provide compared to simpler frameworks. InnovationHere we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species–environment relationships. We illustrate the inferential benefits of SVC SDMs with simulations and two case studies: one that assesses spatially varying trends of 51 forest bird species in the eastern United States over two decades and a second that evaluates spatial variability in the effects of five decades of land cover change on grasshopper sparrow (Ammodramus savannarum) occurrence across the continental United States. Main conclusionsWe found strong support for SVC SDMs compared to simpler alternatives in both empirical case studies. Factors operating at fine spatial scales, accounted for by the SVCs, were the primary divers of spatial variability in forest bird occurrence trends. Additionally, SVCs revealed complex species–habitat relationships with grassland and cropland area for grasshopper sparrow, providing nuanced insights into how future land use change may shape its distribution. These applications display the utility of SVC SDMs to help reveal the environmental factors that drive species distributions across both local and broad scales. We conclude by discussing the potential applications of SVC SDMs in ecology and conservation.more » « less
An official website of the United States government
