skip to main content


Search for: All records

Award ID contains: 1653892

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The title compound, [Cu 2 (C 19 H 23 N 7 O)(C 2 H 3 O 2 ) 4 ] n , was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-ethoxy- N 2 , N 4 -bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine. The crystallized product adopts the monoclinic P 2 1 / c space group. The metal core exhibits a paddle-wheel structure typical for dicopper tetraacetate units, with triazine and pyridyl nitrogen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c -glide of the P 2 1 / c setting of the space group. The resulting chains running along the c -axis direction are held together by intramolecular N—H...O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure. 
    more » « less
  2. Incorporation of the transition metal ion V(V) into hydrogels has been used to impart photoresponsive behavior, which was used to tune materials properties during light irradiation. The photoreaction in QHE-cellulose/agarose hydrogels coordinated with vanadium was evidenced by a clear color change of yellow to blue through a green intermediate. This color change was attributed to the reduction of V(V) to V(IV) as described in our previous work. A concomitant oxidative breakdown of the polysaccharide chain was noticeable upon the reduction of V(V) with a decrease in stiffness (G′) of the hydrogel material. This reduction of the metal ion and breakdown of polysaccharide chain induced irreversible changes in the microstructure of the hydrogel, enabling the controlled delivery of V(IV) and/or encapsulated cargo. Scanning electron microscopy studies showed an increase in pore sizes and guest cavity formation during irradiation. In addition to the significant drop in mechanical properties like storage and loss modulus in the gel materials, a viscosity drop in the polymer solution was observed through irradiation, indicating breakdown of the polysaccharide chain. A photomask can be used to create discrete patterns on these materials upon irradiation 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)