Supramolecular elastomers: Switchable mechanical properties and tuning photohealing with changes in supramolecular interactions
More Like this
-
Self-assembly of amphiphilic small molecules in water leads to nanostructures with customizable structure–property relationships arising from their tunable chemistries. Characterization of these assemblies is generally limited to their static structures – e.g. their geometries and dimensions – but the implementation of tools that provide a deeper understanding of molecular motions has recently emerged. Here, we summarize recent reports showcasing dynamics characterization tools and their application to small molecule assemblies, and we go on to highlight supramolecular systems whose properties are substantially affected by their conformational, exchange, and water dynamics. This review illustrates the importance of considering dynamics in rational amphiphile design.more » « less
-
null (Ed.)Hydrogels comprise a class of soft materials which are extremely useful in a number of contexts, for example as matrix-mimetic biomaterials for applications in regenerative medicine and drug delivery. One particular subclass of hydrogels consists of materials prepared through non-covalent physical crosslinking afforded by supramolecular recognition motifs. The dynamic, reversible, and equilibrium-governed features of these molecular-scale motifs often transcend length-scales to endow the resulting hydrogels with these same properties on the bulk scale. In efforts to engineer hydrogels of all types with more precise or application-specific uses, inclusion of stimuli-responsive sol–gel transformations has been broadly explored. In the context of biomedical uses, temperature is an interesting stimulus which has been the focus of numerous hydrogel designs, supramolecular or otherwise. Most supramolecular motifs are inherently temperature-sensitive, with elevated temperatures commonly disfavoring motif formation and/or accelerating its dissociation. In addition, supramolecular motifs have also been incorporated for physical crosslinking in conjunction with polymeric or macromeric building blocks which themselves exhibit temperature-responsive changes to their properties. Through molecular-scale engineering of supramolecular recognition, and selection of a particular motif or polymeric/macromeric backbone, it is thus possible to devise a number of supramolecular hydrogel materials to empower a variety of future biomedical applications.more » « less
-
Polychaete worms display a remarkable jaw structure, where a gradient in metal-ligand coordination down thelength of the jaw results in a shift from hard to soft mechanics. To mimic these gradient structures, a Zn-coordinated supramolecular polymer is crosslinked into a covalent matrix to afford supramolecular semi-in-terpenetrating networks (SIPNs). These SIPN materials exhibit improved mechanics with a lower supramolecularcontent (30 wt%), allowing for energy dissipation through cavitation to increase material toughness. The shift inmechanical behavior is further attributed to the morphology, where the size of the phase-separated droplets andnature of the continuous phase in these SIPNs contributes to the material mechanics. Furthermore, chemicalgradients are applied to these systems through exposure to a competitive ligand, offering control over the lo-calization of supramolecular interactions. These materials offer a framework to mediate mechanics whilemaintaining the ability to program gradient supramolecular interactions.more » « less
-
We report a synthetic strategy to integrate discrete coordination cages into extended porous materials by decorating opposite charges on the singular cage, which offers multidirectional electrostatic forces among cages and leads to a porous supramolecular ionic solid. The resulting material is non-centrosymmetric and affords a piezoelectric coefficient of 8.19 pC N −1 , higher than that of the wurtzite ZnO.more » « less
An official website of the United States government

