skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1653909

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Intrachain charge transport is unique to conjugated polymers distinct from inorganic and small molecular semiconductors and is key to achieving high-performance organic electronics. Polymer backbone planarity and thin film morphology sensitively modulate intrachain charge transport. However, simple, generic nonsynthetic approaches for tuning backbone planarity and the ensuing multiscale assembly process do not exist. We first demonstrate that printing flow is capable of planarizing the originally twisted polymer backbone to substantially increase the conjugation length. This conformation change leads to a marked morphological transition from chiral, twinned domains to achiral, highly aligned morphology, hence a fourfold increase in charge carrier mobilities. We found a surprising mechanism that flow extinguishes a lyotropic twist-bend mesophase upon backbone planarization, leading to the observed morphology and electronic structure transitions. 
    more » « less
  5. Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. We report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors. 
    more » « less
  6. Side-chain sequence enabled regioisomeric acceptors, bearing different side-chain sequences on the same conjugated backbone, are herein reported. Two regioregular polymers PTBI-1 and PTBI-2 and one regiorandom polymer PTBI-3 were synthesized from these two regioisomeric acceptors for a comparative study. UV–vis–NIR absorption spectroscopy and electrochemical study confirmed similar frontier molecular orbital levels of the three polymers in their solid state. More intriguingly, absorption profiles suggest that the sequence of side chains greatly governs the aggregation behaviors. Furthermore, the PTBI-2 film shows larger ordered domains than PTBI-1 and PTBI-3 films, as supported by AFM and GIWAXS measurements. As a result, PTBI-2-based FET devices achieved an average hole mobility of 1.37 cm2 V–1 s–1, much higher than the two polymers with other side-chain sequences. The regiorandom PTBI-3 exhibited the lowest average hole mobility of 0.27 cm2 V–1 s–1. This study highlights the significant impact of side-chain sequence regioisomerism on aggregation behaviors, morphologies, and subsequently charge transport properties of donor–acceptor type conjugated polymers. 
    more » « less