skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semiconducting polymer blends that exhibit stable charge transport at high temperatures
Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. We report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors.  more » « less
Award ID(s):
1653909
PAR ID:
10081026
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
362
Issue:
6419
ISSN:
0036-8075
Page Range / eLocation ID:
p. 1131-1134
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Highly crystalline thin films in organic semiconductors are important for applications in high‐performance organic optoelectronics. Here, the effect of grain boundaries on the Hall effect and charge transport properties of organic transistors based on two exemplary benchmark systems is elucidated: (1) solution‐processed blends of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) small molecule and indacenodithiophene‐benzothiadiazole (C16IDT‐BT) conjugated polymer, and (2) large‐area vacuum evaporated polycrystalline thin films of rubrene (C42H28). It is discovered that, despite the high field‐effect mobilities of up to 6 cm2V−1s−1and the evidence of a delocalized band‐like charge transport, the Hall effect in polycrystalline organic transistors is systematically and significantly underdeveloped, with the carrier coherence factor α < 1 (i.e., yields an underestimated Hall mobility and an overestimated carrier density). A model based on capacitively charged grain boundaries explaining this unusual behavior is described. This work significantly advances the understanding of magneto‐transport properties of organic semiconductor thin films. 
    more » « less
  2. Abstract Here, a polymer blend active layer that exhibits both electronic and adhesive properties is introduced. Various conjugated polymers are blended with a catechol‐based polymer that shows high adhesion, such that blends serve as the active layer of multifunctional sticky organic thin‐film transistors (OTFTs). Blend films maintain relatively constant field‐effect charge carrier mobility in OTFTs regardless of composition. Lap shear adhesion strength tests show that all blend films exhibit adhesive properties with adhesion values ranging from 0.05 to 4.30 MPa. With relatively consistent mobility and the presence of adhesive properties at different compositions, blends of conjugated and adhesive polymers can lead to next‐generation organic transistors for stable 3D stacking and waterproof adhesive sensors. 
    more » « less
  3. The development of high-throughput experimentation (HTE) methods to efficiently screen multiparameter spaces is key to accelerating the discovery of high-performance multicomponent materials (e.g., polymer blends, colloids, etc.) for sensors, separations, energy, coatings, and other thin-film applications relevant to society. Although the generation and characterization of gradient thin-film library samples is a common approach to enable materials HTE, the ability to study many systems is impeded by the need to overcome unfavorable solubilities and viscosities among other processing challenges at ambient conditions. In this protocol, a solution coating system capable of operating temperatures over 110 °C is designed and demonstrated for the deposition of composition gradient polymer libraries. The system is equipped with a custom, solvent-resistant passive mixer module suitable for high-temperature mixing of polymer solutions at ambient pressure. Residence time distribution modeling was employed to predict the coating conditions necessary to generate composition gradient films using a poly(3-hexylthiophene) and poly(styrene) model system. Poly(propylene) and poly(styrene) blends were selected as a first demonstration of high temperature gradient film coating: the blend represents a polymer system where gradient films are traditionally difficult to generate via existing coating approaches due to solubility constraints at ambient conditions. The methodology developed here is expected to widen the range of solution processed materials that can be explored via high-throughput laboratory sampling and provides an avenue for efficiently screening multiparameter materials spaces and/or populating the large datasets required to enable data-driven materials science. 
    more » « less
  4. Abstract Polymers play an integral role in various applications, from everyday use to advanced technologies. In the era of machine learning (ML), polymer informatics has become a vital field for efficiently designing and developing polymeric materials. However, the focus of polymer informatics has predominantly centered on single-component polymers, leaving the vast chemical space of polymer blends relatively unexplored. This study employs a high-throughput molecular dynamics (MD) simulation combined with active learning (AL) to uncover polymer blends with enhanced thermal conductivity (TC) compared to the constituent single-component polymers. Initially, the TC of about 600 amorphous single-component polymers and 200 amorphous polymer blends with varying blending ratios are determined through MD simulations. The optimal representation method for polymer blends is identified, which involves a weighted sum approach that extends existing polymer representation from single-component polymers to polymer blends. An AL framework, combining MD simulation and ML, is employed to explore the TC of approximately 550,000 unlabeled polymer blends. The AL framework proves highly effective in accelerating the discovery of high-performance polymer blends for thermal transport. Additionally, we delve into the relationship between TC, radius of gyration (Rg), and hydrogen bonding, highlighting the roles of inter- and intra-chain interactions in thermal transport in amorphous polymer blends. A significant positive association between TC andRgimprovement and an indirect contribution from H-bond interaction to TC enhancement are revealed through a log-linear model and an odds ratio calculation, emphasizing the impact of increasingRgand H-bond interactions on enhancing polymer blend TC. 
    more » « less
  5. Abstract A major challenge in the pursuit of higher‐energy‐density lithium batteries for carbon‐neutral‐mobility is electrolyte compatibility with a lithium metal electrode. This study demonstrates the robust and stable nature of acloso‐borate based gel polymer electrolyte (GPE), which enables outstanding electrochemical stability and capacity retention upon extensive cycling. The GPE developed herein has an ionic conductivity of 7.3 × 10−4 S cm−2at room temperature and stability over a wide temperature range from −35 to 80 °C with a high lithium transference number ( = 0.51). Multinuclear nuclear magnetic resonance and Fourier transform infrared are used to understand the solvation environment and interaction between the GPE components. Density functional theory calculations are leveraged to gain additional insight into the coordination environment and support spectroscopic interpretations. The GPE is also established to be a suitable electrolyte for extended cycling with four different active electrode materials when paired with a lithium metal electrode. The GPE can also be incorporated into a flexible battery that is capable of being cut and still functional. The incorporation of acloso‐borate into a gel polymer matrix represents a new direction for enhancing the electrochemical and physical properties of this class of materials. 
    more » « less