Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The manipulation of magnetization through optically generated ultrafast spin currents is a fascinating area that needs a thorough understanding for its potential future applications. In this work, a comprehensive investigation of helicity‐driven optical spin‐orbit torque in heavy metal/ferromagnetic metal heterostructures is presented, specifically cobalt capped with gold or platinum, subject to laser pumping at different wavelengths. The results demonstrate up to tenfold enhancement in optical spin‐orbit torque quantum efficiency for gold compared to platinum of the same thickness when pumped with a visible laser. Additionally, the study provides the first experimental analysis of the photon energy dependence of optical spin‐orbit torque and derives the optical spin orientation spectra for both gold/cobalt and platinum/cobalt heterostructures. A key insight gained from the study is the impact of photon energy‐dependent spin transport in the system, which suggests the use of a high photon energy pump for efficient spin transport. These findings highlight the potential of spin current generation and manipulation in gold/ferromagnet heterostructures for a wide range of applications such as all‐optical magnetization switching, spin‐wave generation and control, and spintronic terahertz emission.more » « less
-
Abstract Manipulation of nanoparticles by light induced forces is widely used in nanotechnology and bioengineering. In normal cases, when a nanoparticle is illuminated by light waves, the transfer of momentum from light to the nanoparticle can push it to move along the light propagation direction. On the other hand, the lateral optical force can transport an object perpendicular to the light propagation direction, and the optical pulling force can attract an object toward the light source. Although these optical forces have drawn growing attention, in situ tuning of them is rarely explored. In this paper, tuning of both lateral optical forces and optical pulling forces is numerically demonstrated via a graphene/α‐phase molybdenum trioxide (α‐MoO3) bilayer structure. Under plane‐wave illumination, both the amplitude and direction of the optical forces exerted on a nanoparticle above this bilayer structure can be tuned in the mid‐infrared range. The underlying mechanism can be understood by studying the corresponding isofrequency contours of the hybrid plasmon‐phonon polaritons supported by the graphene/α‐MoO3bilayer. The analytical study using the dipole approximation method reproduces the numerical results, revealing the origin of the optical forces. This work opens a new avenue for engineering optical forces to manipulate various objects optically.more » « less
-
Abstract On the basis of the Jones matrix, independent control over the amplitude and phase of light has been demonstrated by combining several meta‐atoms into the supercell of a metasurface. However, due to the intrinsic limitation of a planar achiral structure, the maximum number of independent, complex elements in one Jones matrix is three, giving rise to up to three‐channel amplitude and phase control. In this work, more Jones matrices corresponding to different angles of incidence are proposed to add, so that the degrees of freedom in the amplitude and phase control can be further increased. The supercell of the designed metasurfaces consists of three dielectric nanoblocks with predefined rotation angles and displacements in the 2D space, which can be inversely determined with the help of the genetic algorithm. Empowered by the ability to realize four‐ or even eight‐channel amplitude and phase control, the generation of multiple structured light, including two independent perfect Poincaré beams, two double‐ring perfect Poincaré beams, two perfect Poincaré beam arrays, and four vector vortex beam arrays, is numerically demonstrated. Such novel designs are expected to benefit the development of modern optical applications, including but not limited to optical communications, quantum information, and signal encryption.more » « less
-
Abstract Graphene, a 2D material with tunable optical properties, has recently attracted intense interest for reconfigurable metasurfaces. So far, the working wavelength of graphene‐based or hybrid graphene metasurfaces has been limited in the mid‐infrared and terahertz spectra. In this paper, by combining graphene with Au nanostructures, the authors demonstrate a near‐infrared tunable metasurface with decent modulation efficiency, weak dependence on graphene's carrier mobility, and small gate voltages, attributing to the unique interband transition of graphene. The experimental results agree well with numerical simulations. It is also shown that by properly designing the structural parameters of Au nanostructures, the hybrid graphene metasurface can be tunable in both near‐infrared and mid‐infrared regions.more » « less
-
Abstract Polaritons are quasiparticles originating from strong interactions between photons and elementary excitations that could enable high tunability, tight electromagnetic field confinement, and large density of photonic states, making it possible to achieve novel and otherwise inaccessible functionalities. For these reasons, polaritons spawn great interest in the fields of physics, materials science, and optics for both fundamental studies as well as potential applications (e.g., modulators, photodetectors, photoluminescence, etc.). In recent years, the explosive growth of research in graphene and other 2D van der Waals materials is witnessed because they provide a new platform that substantially complements conventional metals, dielectrics, and semiconductors to investigate different polariton modes. This review highlights the works published in recent years on the topic of polariton photonics based on structured metals, graphene, and transition‐metal dichalcogenides (TMDs). The exotic optical properties of the polaritons in metallic structures and 2D van der Waals materials offer bright prospects for the development of high‐performance photonic and optoelectronic devices.more » « less
-
Abstract Over the past decades, optical manipulation of magnetization by ultrafast laser pulses has attracted extensive interest. It not only shows intriguing fundamental science arising from the interactions between spins, electrons, phonons, and photons, but also manifests the potential to process and store data at a speed that is three orders of magnitude faster than the current technologies. In this paper, all‐optical helicity‐dependent switching (AO‐HDS) in hybrid metal–ferromagnet thin films, which consist of Co/Pt multilayers with perpendicular magnetic anisotropy and an Au film capping layer on the top, is experimentally demonstrated. The switching behaviors of the hybrid Co/Pt–Au material, with various laser repetition rates, scanning speeds, and fluencies, are systematically studied. In comparison with bare Co/Pt multilayers, the hybrid metal–ferromagnet thin films show pronounced AO‐HDS when the number of laser pulses per μm along the scanning direction gradually increases. In addition, the AO‐HDS effect is very robust against laser fluences. A possible mechanism is further proposed based on numerical simulations of the optomagnetic coupling model. These findings promise a new material system that exhibits stable AO‐HDS phenomena, and hence can transform future magnetic storage devices, especially with the addition of plasmonic nanostructures made of noble metals.more » « less
-
Abstract Incorporating photonic crystals with nanoplasmonic building blocks gives rise to novel optoelectronic properties that promise designing advanced multifunctional materials and electronics. Herein, the free‐standing chiral plasmonic composite films are designed by coassembling anisotropic plasmonic gold nanorods (GNRs) and rod‐like cellulose nanocrystals (CNCs). The effects of surface charge and concentration of the GNRs on the structure and optical properties of the CNC/GNR films are examined within this study. The CNC/GNR hybrid films retain the photonic characteristic of the CNCs host while concomitantly possessing the plasmonic resonance of GNRs. The negatively charged GNRs distribute uniformly in the layered CNCs host, inducing strong electrostatic repulsion among the CNCs and thus promoting the formation of a larger helical pitch than the case without GNRs. The positively charged GNRs decrease the chiroptical activity in the composite films with increasing the concentration of GNR, which is confirmed by the circular dichroism spectra. Notably, the surface plasmon resonances of GNRs enhance the fluorescence emission, which has been demonstrated by surface‐enhanced fluorescence signals in this work. This study sheds light on fabricating functional chiral plasmonic composite films with enhanced chiral plasmonics by utilizing CNCs as a dynamic chiral nematic template and adjusting surface charges.more » « less
-
Abstract Light beams carrying orbital angular momentum (OAM) in the form of optical vortices have attracted great interest due to their capability for providing a new dimension and approach to manipulate light–matter interactions. Recently, plasmonics has offered efficient ways to focus vortex beams beyond the diffraction limit. However, unlike in the visible and near‐infrared regime, it is still a big challenge to realize plasmonic vortices at far‐infrared and even longer wavelengths. An effective strategy to create deep‐subwavelength near‐field electromagnetic (EM) vortices operating in the low frequency region is proposed. Taking advantage of the asymmetric spatial distribution of EM field supported by a metallic comb‐shaped waveguide, plasmonic vortex modes that are strongly confined in a well‐designed deep‐subwavelength meta‐particle with desired topological charges can be excited. Such unique phenomena are confirmed by the microwave experiments. An equivalent physical model backed up by the numerical simulations is performed to reveal the underlying mechanism of the plasmonic vortex generation. This spoof‐plasmon assisted focusing of EM waves with OAM may find potentials for functional integrated elements and devices operating in the microwave, terahertz, and even far‐infrared regions.more » « less
An official website of the United States government
