skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Near‐Infrared Reflection Modulation Through Electrical Tuning of Hybrid Graphene Metasurfaces
Abstract Graphene, a 2D material with tunable optical properties, has recently attracted intense interest for reconfigurable metasurfaces. So far, the working wavelength of graphene‐based or hybrid graphene metasurfaces has been limited in the mid‐infrared and terahertz spectra. In this paper, by combining graphene with Au nanostructures, the authors demonstrate a near‐infrared tunable metasurface with decent modulation efficiency, weak dependence on graphene's carrier mobility, and small gate voltages, attributing to the unique interband transition of graphene. The experimental results agree well with numerical simulations. It is also shown that by properly designing the structural parameters of Au nanostructures, the hybrid graphene metasurface can be tunable in both near‐infrared and mid‐infrared regions.  more » « less
Award ID(s):
1654192 2136168
PAR ID:
10363904
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
10
Issue:
6
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrating phase-change materials in metasurfaces has emerged as a powerful strategy to realize optical devices with tunable electromagnetic responses. Here, phase-change chiral metasurfaces based on GST-225 material with the designed trapezoid-shaped resonators are demonstrated to achieve tunable circular dichroism (CD) responses in the infrared regime. The asymmetric trapezoid-shaped resonators are designed to support two chiral plasmonic resonances with opposite CD responses for realizing switchable CD between negative and positive values using the GST phase change from amorphous to crystalline. The electromagnetic field distributions of the chiral plasmonic resonant modes are analyzed to understand the chiroptical responses of the metasurface. Furthermore, the variations in the absorption spectrum and CD value for the metasurface as a function of the baking time during the GST phase transition are analyzed to reveal the underlying thermal tuning process of the metasurface. The demonstrated phase-change metasurfaces with tunable CD responses hold significant promise in enabling many applications in the infrared regime such as chiral sensing, encrypted communication, and thermal imaging. 
    more » « less
  2. Abstract The past decade has witnessed a rapid growth of graphene plasmonics and their applications in different fields. Compared with conventional plasmonic materials, graphene enables highly confined plasmons with much longer lifetimes. Moreover, graphene plasmons work in an extended wavelength range, i.e., mid-infrared and terahertz regime, overlapping with the fingerprints of most organic and biomolecules, and have broadened their applications towards plasmonic biological and chemical sensors. In this review, we discuss intrinsic plasmonic properties of graphene and strategies both for tuning graphene plasmons as well as achieving higher performance by integrating graphene with plasmonic nanostructures. Next, we survey applications of graphene and graphene-hybrid materials in biosensors, chemical sensors, optical sensors, and sensors in other fields. Lastly, we conclude this review by providing a brief outlook and challenges of the field. Through this review, we aim to provide an overall picture of graphene plasmonic sensing and to suggest future trends of development of graphene plasmonics. 
    more » « less
  3. Abstract Atomically thin, two-dimensional, transition-metal dichalcogenide (TMD) monolayers have recently emerged as a versatile platform for optoelectronics. Their appeal stems from a tunable direct bandgap in the visible and near-infrared regions, the ability to enable strong coupling to light, and the unique opportunity to address the valley degree of freedom over atomically thin layers. Additionally, monolayer TMDs can host defect-bound localized excitons that behave as single-photon emitters, opening exciting avenues for highly integrated 2D quantum photonic circuitry. By introducing plasmonic nanostructures and metasurfaces, one may effectively enhance light harvesting, direct valley-polarized emission, and route valley index. This review article focuses on these critical aspects to develop integrated photonic and valleytronic applications by exploiting exciton–plasmon coupling over a new hybrid material platform. 
    more » « less
  4. Surface-enhanced infrared absorption (SEIRA) based on top-down fabricated nanostructures such as nanoantennas and metasurfaces has attracted much attention in recent years. These plasmonic resonant nanostructures can enhance the IR absorption signal of nearby molecules through its nearfield enhancement and have been shown to be able to detect adsorbed monolayers of proteins and lipids through their IR absorption spectra. Here, we demonstrate the continuous monitoring of cellular responses to stimuli using metasurface-enhanced infrared spectroscopy (MEIRS). A431 cells are seeded on a gold plasmonic metasurface fabricated on CaF2 substrate. Continuous monitoring is made possible by integrating the metasurface with a flow chamber, and the IR absorption spectra of the attached cells are measured in reflectance mode under continuous perfusion of cell culture medium. Scanning electron microscopy (SEM) revealed that the cells preferentially adhere to gold surfaces rather than CaF2 surfaces, suggesting that the IR signal measured through MEIRS is highly sensitive to the cells’ attachment and interaction with the gold metasurface. We have monitored the effect of methyl-beta-cyclodextrin, a cholesterol-depleting compound, on A431 cells. Principal component analysis highlighted the complex and subtle spectral changes of the cells. Keywords: MIR spectroscopy, surface-enhanced infrared absorption, metasurface, metasurface enhanced infrared absorption, MEIRS, cell adhesion, methyl-beta-cyclodextrin, cholesterol 
    more » « less
  5. ABSTRACT When arranged in a metasurface, the collective enhancement of field interactions within scattering elements enables precise control over the incident light phase and amplitude. In this work, we analyze collective multipolar resonances in metasurfaces that arise from the spatially extended nature of electromagnetic interactions within these structures, with particular emphasis on MXene metasurfaces. This collective scattering leads to unique and tunable resonance behaviors that reach beyond the simple dipolar approximations, thus enabling advanced manipulation of light at subwavelength scales. We also explore resonances in the scatterers and metasurfaces made of different materials, categorizing them into lossy materials, including transition metal dichalcogenides and conventional metals, and high‐refractive‐index materials, such as silicon. We observe the excitation of MXene multipolar resonances across the visible‐ and infrared‐wavelength spectra and demonstrate their control through the design of scattering elements of the metasurface. We show that periodic lattice arrays support strong localized resonances through the collective response of individual nanoresonators and that one can control multipolar resonances by engineering metasurface nanoresonators and their distribution. 
    more » « less