skip to main content


Search for: All records

Award ID contains: 1654301

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the synthesis and characterization of a nickel(II) complex of the dicarboranyl CNC dianionic pincer ligand, which activates acetonitrile by C–C bond cleavage. Deprotonation of the relatively acidic C–H bond of the coordinated acetonitrile with potassium t-butoxide led to the formation of the C-bound cyanomethylene ligand at the metal center. Unlike most previously characterized Ni(II) cyanoalkyls, the resulting complex exhibited quick transformation under aerobic conditions at room temperature to afford CNC-ligated nickel(II) cyanide, indicating facile cleavage of the C–CN bond. The cyanoalkyl and cyanide complexes were isolated in excellent yields and characterized by NMR spectroscopy and single-crystal X-ray diffraction. Carbon-containing products of the aerobic C–CN bond activation are hydroxyacetonitrile, formaldehyde, cyanomethyl formate, and carbon dioxide. 
    more » « less
    Free, publicly-accessible full text available July 12, 2024
  2. null (Ed.)
  3. null (Ed.)
    Carbon atom functionalization via generation of carbanions is the cornerstone of carborane chemistry. In this work, we report the synthesis and structural characterization of free ortho-carboranyl [C2B10H11]−, a three-dimensional inorganic analog of the elusive phenyl anion that features a “naked” carbanion center. The first example of a stable, discrete C(H)-deprotonated carborane anion was isolated as a completely separated ion pair with a crown ether-encapsulated potassium cation. An analogous approach led to the isolation and structural characterization of a doubly deprotonated 1,1′-bis(o-carborane) anion [C2B10H10]22−, which is the first example of a discrete molecular dicarbanion. These reactive carbanions are key intermediates in carbon vertex chemistry of carborane clusters. 
    more » « less
  4. null (Ed.)
  5. In this work, we introduce a novel approach for the selective assembly of heterometallic complexes by unprecedented coordination of coinage metal cations to strained single ruthenium–boron bonds on a surface of icosahedral boron clusters. M( i ) cations (M = Cu, Ag, and Au) insert into B–Ru bonds of the (BB)–carboryne complex of ruthenium with the formation of four-membered B–M–Ru–B metalacycles. Results of theoretical calculations suggest that bonding within these metalacycles can be best described as unusual three-center-two-electron B–M⋯Ru interactions that are isolobal to B–H⋯Ru borane coordination for M = Cu and Ag, or the pairs of two-center-two electron B–Au and Au–Ru interactions for M = Au. These transformations comprise the first synthetic route to exohedral coinage metal boryl complexes of icosahedral closo -{C 2 B 10 } clusters, which feature short Cu–B (2.029(2) Å) and Ag–B (2.182(3) Å) bonds and the shortest Au–B bond (2.027(2) Å) reported to date. The reported heterometallic complexes contain Cu( i ) and Au( i ) centers in uncharacteristic square-planar coordination environments. These findings pave the way to rational construction of a broader class of multimetallic architectures featuring M–B bonds. 
    more » « less