skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Room-Temperature Aerobic C–CN Bond Activation in Nickel(II) Cyanomethyl Dicarboranyl Complex
We report the synthesis and characterization of a nickel(II) complex of the dicarboranyl CNC dianionic pincer ligand, which activates acetonitrile by C–C bond cleavage. Deprotonation of the relatively acidic C–H bond of the coordinated acetonitrile with potassium t-butoxide led to the formation of the C-bound cyanomethylene ligand at the metal center. Unlike most previously characterized Ni(II) cyanoalkyls, the resulting complex exhibited quick transformation under aerobic conditions at room temperature to afford CNC-ligated nickel(II) cyanide, indicating facile cleavage of the C–CN bond. The cyanoalkyl and cyanide complexes were isolated in excellent yields and characterized by NMR spectroscopy and single-crystal X-ray diffraction. Carbon-containing products of the aerobic C–CN bond activation are hydroxyacetonitrile, formaldehyde, cyanomethyl formate, and carbon dioxide.  more » « less
Award ID(s):
2154828 1654301
PAR ID:
10432651
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Organometallics
ISSN:
0276-7333
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Iridium dibromide complexes of the phenyldiimine ligand 2,6-bis(1-((2,6-dimethylphenyl)imino)ethyl)phenyl, trans-(XyPhDI)IrBr2L, have been synthesized, and relative Ir-L BDFEs have been experimentally determined for a wide range of corresponding adducts of ligands L. An estimate of the absolute enthalpy of Ir-L binding has been obtained from dynamic NMR measurements. The results of DFT calculations are in very good agreement with the relative and absolute experimental values. Computational studies were extended to the formation of adducts of (XyPhDI)IrH2 and (XyPhDI)Ir(I), as well as other (pincer)Ir(I) fragments, (Phebox)Ir(I) and (PCP)Ir(I), to enable a comparison of electronic and steric effects with these archetypal pincer ligands. Attempts to reduce (XyPhDI)IrBr2(MeCN) to a hydride or an Ir(I) complex yielded a dinuclear CN-bridged complex with a methyl ligand on the cyanide-C-bound Ir center (characterized by scXRD), indicating that C-CN bond cleavage took place at that Ir center. DFT calculations indicate that the C-CN bond cleavage occurs at one Ir center with strong assistance by coordination of the CN nitrogen to the other Ir center. 
    more » « less
  2. Iridium dibromide complexes of the phenyldiimine ligand 2,6-bis(1-((2,6-dimethylphenyl)imino)ethyl)phenyl, trans-(XyPhDI)IrBr2L, have been synthesized, and relative Ir-L BDFEs have been experimentally determined for a wide range of corresponding adducts of ligands L. An estimate of the absolute enthalpy of Ir-L binding has been obtained from dynamic NMR measurements. The results of DFT calculations are in very good agreement with the relative and absolute experimental values. Computational studies were extended to the formation of adducts of (XyPhDI)IrH2 and (XyPhDI)IrI, as well as other (pincer)IrI fragments, (Phebox)IrI and (PCP)IrI, to enable a comparison of electronic and steric effects with these archetypal pincer ligands. Attempts to reduce (XyPhDI)IrBr2(MeCN) to a hydride or an IrI complex yielded a dinuclear CN-bridged complex with a methyl ligand on the cyanide-C-bound Ir center (characterized by scXRD), indicating that C-CN bond cleavage took place at that Ir center. DFT calculations indicate that the C-CN bond cleavage occurs at one Ir center with strong assistance by coordination of the CN nitrogen to the other Ir center. 
    more » « less
  3. Cyanide, as an ambidentate ligand, plays a pivotal role in providing a simple diatomic building-block motif for controlled metal aggregation (M–CN–M′). Specifically, the inherent hard–soft nature of the cyanide ligand, i.e. , hard-nitrogen and soft-carbon centers, is due to electronic handles for binding Lewis acids following the hard–soft acid–base principle. Studies by Holm and Karlin showed structural and electronic requirements for cyanide-bridged (por)Fe III –CN–Cu II/I (por = porphyrin) molecular assemblies as biomimetics for cyanide-inhibited terminal quinol oxidases and cytochrome-C oxidase. The dinitrosyliron unit (DNIU) that exists in two redox states, {Fe(NO) 2 } 9 and {Fe(NO) 2 } 10 , draws attention as an electronic analogy of Cu II and Cu I , d 9 and d 10 , respectively. In similar controlled aggregations, L-type [(η 5 -C 5 R 5 )Fe(dppe)(CN)] (dppe = diphenyl phosphinoethane; R = H and Me) have been used as N-donor, μ-cyanoiron metalloligands to stabilize the DNIU in two redox states. Two bimetallic [(η 5 -C 5 R 5 )(dppe)Fe II –CN–{Fe(NO) 2 } 9 (sIMes)][BF 4 ] complexes, Fe-1 (R = H) and Fe*-1 (R = CH 3 ), showed dissimilar Fe II CN–{Fe(NO) 2 } 9 angular bends due to the electronic donor properties of the [(η 5 -C 5 R 5 )Fe(dppe)(CN)] μ-cyanoiron metalloligand. A trimetallic [(η 5 -C 5 Me 5 )(dppe)Fe II –CN] 2 –{Fe(NO) 2 } 10 complex, Fe*-2 , engaged two bridging μ-cyanoiron metalloligands to stabilize the {Fe(NO) 2 } 10 unit. The lability of the Fe II –CN–{Fe(NO) 2 } 9/10 bond was probed by suitable X-type (Na + SPh − ) and L-type (PMe 3 ) ligands. Treatment of Fe-1 and Fe*-1 with PMe 3 accounted for a reduction-induced substitution at the DNIU, releasing [(η 5 -C 5 R 5 )Fe(dppe)(CN)] and N-heterocyclic carbene, and generating (PMe 3 ) 2 Fe(NO) 2 as the reduced {Fe(NO) 2 } 10 product. 
    more » « less
  4. Interest in O 2 -dependent aliphatic carbon–carbon (C–C) bond cleavage reactions of first row divalent metal diketonate complexes stems from the desire to further understand the reaction pathways of enzymes such as DKE1 and to extract information to develop applications in organic synthesis. A recent report of O 2 -dependent aliphatic C–C bond cleavage at ambient temperature in Ni( ii ) diketonate complexes supported by a tridentate nitrogen donor ligand [(MBBP)Ni(PhC(O)CHC(O)Ph)]Cl ( 7-Cl ; MBBP = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine) in the presence of NEt 3 spurred our interest in further examining the chemistry of such complexes. A series of new TERPY-ligated Ni( ii ) diketonate complexes of the general formula [(TERPY)Ni(R 2 -1,3-diketonate)]ClO 4 ( 1 : R = CH 3 ; 2 : R = C(CH 3 ) 3 ; 3 : R = Ph) was prepared under air and characterized using single crystal X-ray crystallography, elemental analysis, 1 H NMR, ESI-MS, FTIR, and UV-vis. Analysis of the reaction mixtures in which these complexes were generated using 1 H NMR and ESI-MS revealed the presence of both the desired diketonate complex and the bis-TERPY derivative [(TERPY) 2 Ni](ClO 4 ) 2 ( 4 ). Through selective crystallization 1–3 were isolated in analytically pure form. Analysis of reaction mixtures leading to the formation of the MBBP analogs [(MBBP)Ni(R 2 -1,3-diketonate)]X (X = ClO 4 : 5 : R = CH 3 ; 6 : R = C(CH 3 ) 3 ; 7-ClO4 : R = Ph; X = Cl: 7-Cl : R = Ph) using 1 H NMR and ESI-MS revealed the presence of [(MBBP) 2 Ni](ClO 4 ) 2 ( 8 ). Analysis of aerobic acetonitrile solutions of analytically pure 1–3 , 5 and 6 containing NEt 3 and in some cases H 2 O using 1 H NMR and UV-vis revealed evidence for the formation of additional bis-ligand complexes ( 4 and 8 ) but suggested no oxidative diketonate cleavage reactivity. Analysis of the organic products generated from 3 , 7-ClO4 and 7-Cl revealed unaltered dibenzoylmethane. Our results therefore indicate that N 3 -ligated Ni( ii ) complexes of unsubstituted diketonate ligands do not exhibit O 2 -dependent aliphatic C–C bond clevage at room temperature, including in the presence of NEt 3 and/or H 2 O. 
    more » « less
  5. Illumination of aerobic acetonitrile solutions of bipyridine-ligated Co(ii) chlorodiketonate complexes results in O2-dependent aliphatic C–C bond cleavage with high18O incorporation. 
    more » « less