skip to main content


Search for: All records

Award ID contains: 1654379

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tanihata, I ; Toki, H ; Kajino, T (Ed.)
    We review the theory of nuclear collective vibrations evolved over decades from phenomenological quasiclassical picture to sophisticated microscopic approaches. The major focus is put on the underlying microscopic mechanisms of emergent effects, which define the properties of giant resonances and soft modes. The response of atomic nuclei to electromagnetic and weak fields is discussed in detail. Astrophysical implications of the giant resonances and soft modes are outlined. 
    more » « less
  2. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    β -decay rates of neutron-rich nuclei, in particular those located at neutron shell closures, play a central role in simulations of the heavy-element nucleosynthesis and resulting abundance distributions. We present β -decay half-lives of even-even N = 82 and N = 126 r -process waiting-point nuclei calculated in the approach based on relativistic quasiparticle random phase approximation with quasiparticle-vibration coupling. The calculations include both allowed and first-forbidden transitions. In the N = 82 chain, the quasiparticlevibration coupling has an important impact close to stability, as it increases the contribution of Gamow-Teller modes and improves the agreement with the available data. In the N = 126 chain, we find the decay to proceed dominantly via first-forbidden transitions, even when the coupling to vibrations is included. 
    more » « less