skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: PANDORA Project for the study of photonuclear reactions below $$A=60$$
Abstract Photonuclear reactions of light nuclei below a mass of$$A=60$$ A = 60 are planned to be studied experimentally and theoretically with the PANDORA (Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics) project. Two experimental methods, virtual photon excitation by proton scattering and real photo absorption by a high-brilliance$$\gamma $$ γ -ray beam produced by laser Compton scattering, will be applied to measure the photoabsorption cross sections and decay branching ratio of each decay channel as a function of the photon energy. Several nuclear models, e.g. anti-symmetrized molecular dynamics, mean-field and beyond-mean-field models, a large-scale shell model, and ab initio models, will be employed to predict the photonuclear reactions. The uncertainty in the model predictions will be evaluated based on the discrepancies between the model predictions and experimental data. The data and predictions will be implemented in the general reaction calculation code, . The results will be applied to the simulation of the photo-disintegration process of ultra-high-energy cosmic rays in inter-galactic propagation.  more » « less
Award ID(s):
2209376 1654379
PAR ID:
10512139
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Editor(s):
Borge, Maria
Publisher / Repository:
EDP Sciences, Società Italiana di Fisica and Springer Berlin Heidelberg
Date Published:
Journal Name:
The European Physical Journal A
Edition / Version:
1
Volume:
59
Issue:
9
ISSN:
1434-601X
Page Range / eLocation ID:
208-229
Subject(s) / Keyword(s):
Ultra-high-energy cosmic rays, nuclear dipole response
Format(s):
Medium: X Size: 2.6MB Other: pdf
Size(s):
2.6MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We explore the decay of bound neutrons in the JUNO liquid scintillator detector into invisible particles (e.g.,$$n\rightarrow 3 \nu $$ n 3 ν or$$nn \rightarrow 2 \nu $$ n n 2 ν ), which do not produce an observable signal. The invisible decay includes two decay modes:$$ n \rightarrow { inv} $$ n inv and$$ nn \rightarrow { inv} $$ n n inv . The invisible decays ofs-shell neutrons in$$^{12}\textrm{C}$$ 12 C will leave a highly excited residual nucleus. Subsequently, some de-excitation modes of the excited residual nuclei can produce a time- and space-correlated triple coincidence signal in the JUNO detector. Based on a full Monte Carlo simulation informed with the latest available data, we estimate all backgrounds, including inverse beta decay events of the reactor antineutrino$${\bar{\nu }}_e$$ ν ¯ e , natural radioactivity, cosmogenic isotopes and neutral current interactions of atmospheric neutrinos. Pulse shape discrimination and multivariate analysis techniques are employed to further suppress backgrounds. With two years of exposure, JUNO is expected to give an order of magnitude improvement compared to the current best limits. After 10 years of data taking, the JUNO expected sensitivities at a 90% confidence level are$$\tau /B( n \rightarrow { inv} ) > 5.0 \times 10^{31} \, \textrm{years}$$ τ / B ( n inv ) > 5.0 × 10 31 years and$$\tau /B( nn \rightarrow { inv} ) > 1.4 \times 10^{32} \, \textrm{years}$$ τ / B ( n n inv ) > 1.4 × 10 32 years
    more » « less
  2. Abstract We evaluate the$$a_1(1260) \rightarrow \pi \sigma (f_0(500))$$ a 1 ( 1260 ) π σ ( f 0 ( 500 ) ) decay width from the perspective that the$$a_1(1260)$$ a 1 ( 1260 ) resonance is dynamically generated from the pseudoscalar–vector interaction and the$$\sigma $$ σ arises from the pseudoscalar–pseudoscalar interaction. A triangle mechanism with$$a_1(1260) \rightarrow \rho \pi $$ a 1 ( 1260 ) ρ π followed by$$\rho \rightarrow \pi \pi $$ ρ π π and a fusion of two pions within the loop to produce the$$\sigma $$ σ provides the mechanism for this decay under these assumptions for the nature of the two resonances. We obtain widths of the order of 13–22 MeV. Present experimental results differ substantially from each other, suggesting that extra efforts should be devoted to the precise extraction of this important partial decay width, which should provide valuable information on the nature of the axial vector and scalar meson resonances and help clarify the role of the$$\pi \sigma $$ π σ channel in recent lattice QCD calculations of the$$a_1$$ a 1
    more » « less
  3. Abstract CUPID, the CUORE Upgrade with Particle Identification, is a next-generation experiment to search for neutrinoless double beta decay ($$0\mathrm {\nu \beta \beta }$$ 0 ν β β ) and other rare events using enriched Li$$_{2}$$ 2 $$^{100}$$ 100 MoO$$_{4}$$ 4 scintillating bolometers. It will be hosted by the CUORE cryostat located at the Laboratori Nazionali del Gran Sasso in Italy. The main physics goal of CUPID is to search for$$0\mathrm {\nu \beta \beta }$$ 0 ν β β of$$^{100}$$ 100 Mo with a discovery sensitivity covering the full neutrino mass regime in the inverted ordering scenario, as well as the portion of the normal ordering regime with lightest neutrino mass larger than 10 meV. With a conservative background index of 10$$^{-4}$$ - 4  cts$$/($$ / ( keV$$\cdot $$ · kg$$\cdot $$ · yr$$)$$ ) , 240 kg isotope mass, 5 keV FWHM energy resolution at 3 MeV and 10 live-years of data taking, CUPID will have a 90% C.L. half-life exclusion sensitivity of$$1.8\cdot 10^{27}$$ 1.8 · 10 27  yr, corresponding to an effective Majorana neutrino mass ($$m_{\beta \beta }$$ m β β ) sensitivity of 9–15 meV, and a$$3\sigma $$ 3 σ discovery sensitivity of$$1\cdot 10^{27}$$ 1 · 10 27  yr, corresponding to an$$m_{\beta \beta }$$ m β β range of 12–21 meV. 
    more » « less
  4. Abstract This paper presents the first measurement of$$\psi {(2S)}$$ ψ ( 2 S ) and$$\chi _{c1}(3872)$$ χ c 1 ( 3872 ) meson production within fully reconstructed jets. Each quarkonium state (tag) is reconstructed via its decay to the$${{J \hspace{-1.66656pt}/\hspace{-1.111pt}\psi }} $$ J / ψ ($$\rightarrow $$ $$\mu ^+\mu ^-$$ μ + μ - )$$\pi ^+\pi ^-$$ π + π - final state in the forward region using proton-proton collision data collected by the LHCb experiment at the center-of-mass-energy of$$13\text {TeV} $$ 13 TeV in 2016, corresponding to an integrated luminosity of$$1.64\,\text {\,fb} ^{-1} $$ 1.64 \,fb - 1 . The fragmentation function, presented as the ratio of the quarkonium-tag transverse momentum to the full jet transverse momentum ($$p_{\textrm{T}} (\text {tag})/p_{\textrm{T}} (\text {jet})$$ p T ( tag ) / p T ( jet ) ), is measured differentially in$$p_{\textrm{T}} (\text {jet})$$ p T ( jet ) and$$p_{\textrm{T}} (\text {tag})$$ p T ( tag ) bins. The distributions are separated into promptly produced quarkonia from proton-proton collisions and quarkonia produced from displacedb-hadron decays. While the displaced quarkonia fragmentation functions are in general well described by parton-shower predictions, the prompt quarkonium distributions differ significantly from fixed-order non-relativistic QCD (NRQCD) predictions followed by a QCD parton shower. 
    more » « less
  5. Abstract The elliptic flow$$(v_2)$$ ( v 2 ) of$${\textrm{D}}^{0}$$ D 0 mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ D 0 ) was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ s NN = 5.02  TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ D 0 mesons were reconstructed at midrapidity$$(|y|<0.8)$$ ( | y | < 0.8 ) from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ D 0 K - π + , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ 2 < p T < 12  GeV/c. The result indicates a positive$$v_2$$ v 2 for non-prompt$${{\textrm{D}}^{0}}$$ D 0 mesons with a significance of 2.7$$\sigma $$ σ . The non-prompt$${{\textrm{D}}^{0}}$$ D 0 -meson$$v_2$$ v 2 is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ σ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ 2 < p T < 8 GeV / c , and compatible with the$$v_2$$ v 2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties. 
    more » « less