skip to main content


Search for: All records

Award ID contains: 1655552

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Light, essential for photosynthesis, is present in two periodic cycles in nature: seasonal and diel. Although seasonality of light is typically resolved in ocean biogeochemical–ecosystem models because of its significance for seasonal succession and biogeography of phytoplankton, the diel light cycle is generally not resolved. The goal of this study is to demonstrate the impact of diel light cycles on phytoplankton competition and biogeography in the global ocean.

    Location

    Global ocean.

    Major taxa studied

    Phytoplankton.

    Methods

    We use a three‐dimensional global ocean model and compare simulations of high temporal resolution with and without diel light cycles. The model simulates 15 phytoplankton types with different cell sizes, encompassing two broad ecological strategies: small cells with high nutrient affinity (gleaners) and larger cells with high maximal growth rate (opportunists). Both are grazed by zooplankton and limited by nitrogen, phosphorus and iron.

    Results

    Simulations show that diel cycles of light induce diel cycles in limiting nutrients in the global ocean. Diel nutrient cycles are associated with higher concentrations of limiting nutrients, by 100% at low latitudes (−40° to 40°), a process that increases the relative abundance of opportunists over gleaners. Size classes with the highest maximal growth rates from both gleaner and opportunist groups are favoured by diel light cycles. This mechanism weakens as latitude increases, because the effects of the seasonal cycle dominate over those of the diel cycle.

    Main conclusions

    Understanding the mechanisms that govern phytoplankton biogeography is crucial for predicting ocean ecosystem functioning and biogeochemical cycles. We show that the diel light cycle has a significant impact on phytoplankton competition and biogeography, indicating the need for understanding the role of diel processes in shaping macroecological patterns in the global ocean.

     
    more » « less
  2. Abstract

    High‐throughput sequencing has enabled robust shotgun metagenomic sequencing that informs our understanding of the genetic basis of important biogeochemical processes. Slower to develop, however, are the application of these tools in a controlled experimental framework that pushes the field beyond exploratory analysis toward hypothesis‐driven research. We performed flow‐through reactor experiments to examine how salt marsh sediments from varying depths respond to nitrate addition and linked biogeochemical processes to this underlying genetic foundation. Understanding the mechanistic basis of carbon and nitrogen cycling in salt marsh sediments is critical for predicting how important ecosystem services provided by marshes, including carbon storage and nutrient removal, will respond to global change. Prior to the addition of nitrate, we used metagenomics to examine the functional potential of the sediment microbial community that occurred along a depth gradient, where organic matter reactivity changes due to decomposition. Metagenomic data indicated that genes encoding enzymes involved in respiration, including denitrification, were higher in shallow sediments, and genes indicative of resource limitation were greatest at depth. After 92 d of nitrate enrichment, we measured cumulative increases in dissolved inorganic carbon production, denitrification, and dissimilatory nitrate reduction to ammonium; these rates correlated strongly with genes that encode essential enzymes in these important pathways. Our results highlight the importance of controlled experiments in linking biogeochemical rates to underlying genetic pathways. Furthermore, they indicate the importance of nitrate as an electron acceptor in fueling microbial respiration, which has consequences for carbon and nitrogen cycling and fate in coastal marine systems.

     
    more » « less
  3. null (Ed.)
    We develop a trait-based model founded on the hypothesis that biological systems evolve and organize to maximize entropy production by dissipating chemical and electromagnetic free energy over longer time scales than abiotic processes by implementing temporal strategies. A marine food web consisting of phytoplankton, bacteria, and consumer functional groups is used to explore how temporal strategies, or the lack thereof, change entropy production in a shallow pond that receives a continuous flow of reduced organic carbon plus inorganic nitrogen and illumination from solar radiation with diel and seasonal dynamics. Results show that a temporal strategy that employs an explicit circadian clock produces more entropy than a passive strategy that uses internal carbon storage or a balanced growth strategy that requires phytoplankton to grow with fixed stoichiometry. When the community is forced to operate at high specific growth rates near 2 d−1, the optimization-guided model selects for phytoplankton ecotypes that exhibit complementary for winter versus summer environmental conditions to increase entropy production. We also present a new type of trait-based modeling where trait values are determined by maximizing entropy production rather than by random selection. 
    more » « less