Abstract Eddies play a crucial role in shaping ocean dynamics by affecting material transport, and generating spatio‐temporal heterogeneity. However, how eddies at different scales modulate biogeochemical transformation rates remains an open question. Applying a multi‐scale decomposition to a numerical simulation, we investigate the respective impact of mesoscale and submesoscale eddies on nutrient transport and biogeochemical cycling in the California Current System. First, the non‐linear nature of nutrient uptake by phytoplankton results in a 50% reduction in primary production in the presence of eddies. Second, eddies shape the vertical transport of nutrients with a strong compensation between mesoscale and submesoscale. Third, the eddy effect on nutrient uptake is controlled by the covariance of temperature, nutrient and phytoplankton fluctuations caused by eddies. Our results shed new light on the tight interaction between non‐linear fluid dynamics and ecosystem processes in realistic eddy regimes, which remain largely under‐resolved by global Earth system models.
more »
« less
Diel light cycles affect phytoplankton competition in the global ocean
Abstract AimLight, essential for photosynthesis, is present in two periodic cycles in nature: seasonal and diel. Although seasonality of light is typically resolved in ocean biogeochemical–ecosystem models because of its significance for seasonal succession and biogeography of phytoplankton, the diel light cycle is generally not resolved. The goal of this study is to demonstrate the impact of diel light cycles on phytoplankton competition and biogeography in the global ocean. LocationGlobal ocean. Major taxa studiedPhytoplankton. MethodsWe use a three‐dimensional global ocean model and compare simulations of high temporal resolution with and without diel light cycles. The model simulates 15 phytoplankton types with different cell sizes, encompassing two broad ecological strategies: small cells with high nutrient affinity (gleaners) and larger cells with high maximal growth rate (opportunists). Both are grazed by zooplankton and limited by nitrogen, phosphorus and iron. ResultsSimulations show that diel cycles of light induce diel cycles in limiting nutrients in the global ocean. Diel nutrient cycles are associated with higher concentrations of limiting nutrients, by 100% at low latitudes (−40° to 40°), a process that increases the relative abundance of opportunists over gleaners. Size classes with the highest maximal growth rates from both gleaner and opportunist groups are favoured by diel light cycles. This mechanism weakens as latitude increases, because the effects of the seasonal cycle dominate over those of the diel cycle. Main conclusionsUnderstanding the mechanisms that govern phytoplankton biogeography is crucial for predicting ocean ecosystem functioning and biogeochemical cycles. We show that the diel light cycle has a significant impact on phytoplankton competition and biogeography, indicating the need for understanding the role of diel processes in shaping macroecological patterns in the global ocean.
more »
« less
- PAR ID:
- 10369805
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Ecology and Biogeography
- Volume:
- 31
- Issue:
- 9
- ISSN:
- 1466-822X
- Page Range / eLocation ID:
- p. 1838-1849
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Over the last ten years, satellite and geographically constrained in situ observations largely focused on the northern hemisphere have suggested that annual phytoplankton biomass cycles cannot be fully understood from environmental properties controlling phytoplankton division rates (e.g., nutrients and light), as they omit the role of ecological and environmental loss processes (e.g., grazing, viruses, sinking). Here, we use multi-year observations from a very large array of robotic drifting floats in the Southern Ocean to determine key factors governing phytoplankton biomass dynamics over the annual cycle. Our analysis reveals seasonal phytoplankton accumulation (‘blooming’) events occurring during periods of declining modeled division rates, an observation that highlights the importance of loss processes in dictating the evolution of the seasonal cycle in biomass. In the open Southern Ocean, the spring bloom magnitude is found to be greatest in areas with high dissolved iron concentrations, consistent with iron being a well-established primary limiting nutrient in this region. Under ice observations show that biomass starts increasing in early winter, well before sea ice begins to retreat. The average theoretical sensitivity of the Southern Ocean to potential changes in seasonal nutrient and light availability suggests that a 10% change in phytoplankton division rate may be associated with a 50% reduction in mean bloom magnitude and annual primary productivity, assuming simple changes in the seasonal magnitude of phytoplankton division rates. Overall, our results highlight the importance of quantifying and accounting for both division and loss processes when modeling future changes in phytoplankton biomass cycles.more » « less
-
The daily cycle of photosynthetic primary production at the base of marine food webs is often limited by the availability of scarce nutrients. Microbial competition for these scarce resources can be alleviated insofar as the intensity of nutrient uptake and assimilation activities are distributed heterogeneously across organisms over periodic input cycles. Recent analysis of community transcriptional dynamics in the nitrogen-limited subtropical North Pacific gyre revealed evidence of temporal partitioning of nitrogen uptake and assimilation between eukaryotic phytoplankton, cyanobacteria, and heterotrophic bacteria over day-night cycles. Here, we present results from a Lagrangian metatranscriptomic time series survey in the Sargasso Sea and demonstrate temporally partitioned phosphorus uptake in this phosphorus-limited environment. In the Sargasso, heterotrophic bacteria, eukaryotic phytoplankton, and cyanobacteria express genes for phosphorus assimilation during the morning, day, and dusk, respectively. These results support the generality of temporal niche partitioning as an emergent mechanism that can structure uptake of limiting nutrients and facilitate coexistence of diverse microbes in open ocean ecosystems.more » « less
-
Abstract Phytoplankton iron contents (i.e., quotas) directly link biogeochemical cycles of iron and carbon and drive patterns of nutrient limitation, recycling, and export. Ocean biogeochemical models typically assume that iron quotas are either static or controlled by dissolved iron availability. We measured iron quotas in phytoplankton communities across nutrient gradients in the Pacific Ocean and found that quotas diverged significantly in taxon‐specific ways from laboratory‐derived predictions. Iron quotas varied 40‐fold across nutrient gradients, and nitrogen‐limitation allowed diatoms to accumulate fivefold more iron than co‐occurring flagellates even under low iron availability. Modeling indicates such “luxury” uptake is common in large regions of the low‐iron Pacific Ocean. Among diatoms, both pennate and centric genera accumulated luxury iron, but the cosmopolitan pennate genusPseudo‐nitzschiamaintained iron quotas 10‐fold higher than co‐occurring centric diatoms, likely due to enhanced iron storage. Biogeochemical models should account for taxonomic and macronutrient controls on phytoplankton iron quotas.more » « less
-
Nutrient supply regulates the activity of phytoplankton, but the global biogeography of nutrient limitation and co-limitation is poorly understood.Prochlorococcusadapt to local environments by gene gains and losses, and we used genomic changes as an indicator of adaptation to nutrient stress. We collected metagenomes from all major ocean regions as part of the Global Ocean Ship-based Hydrographic Investigations Program (Bio-GO-SHIP) and quantified shifts in genes involved in nitrogen, phosphorus, and iron assimilation. We found regional transitions in stress type and severity as well as widespread co-stress.Prochlorococcusstress genes, bottle experiments, and Earth system model predictions were correlated. We propose that the biogeography of multinutrient stress is stoichiometrically linked by controls on nitrogen fixation. Our omics-based description of phytoplankton resource use provides a nuanced and highly resolved description of nutrient stress in the global ocean.more » « less
An official website of the United States government
