Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present a high-quality assembly and annotation of the periodical cicada species, Magicicada septendecula (Hemiptera: Auchenorrhyncha: Cicadidae). Periodical cicadas have a significant ecological impact, serving as a food source for many mammals, reptiles, and birds. Magicicada are well known for their massive emergences of 1 to 3 species that appear in different locations in the eastern United States nearly every year. These year classes (“broods”) emerge dependably every 13 or 17 yr in a given location. Recently, it has become clear that 4-yr early or late emergences of a sizeable portion of a population are an important part of the history of brood formation; however, the biological mechanisms by which they track the passage of time remain a mystery. Using PacBio HiFi reads in conjunction with Hi-C proximity ligation data, we have assembled and annotated the first whole genome for a periodical cicada, an important resource for future phylogenetic and comparative genomic analysis. This also represents the first quality genome assembly and annotation for the Hemipteran superfamily Cicadoidea. With a scaffold N50 of 518.9 Mb and a complete BUSCO score of 96.7%, we are confident that this assembly will serve as a vital resource toward uncovering the genomic basis of periodical cicadas’ long, synchronized life cycles and will provide a robust framework for further investigations into these insects.more » « less
- 
            Abstract Rapid species radiations present difficulties for phylogenetic reconstruction due to lack of phylogenetic information and processes such as deep coalescence/incomplete lineage sorting and hybridization. Phylogenomic data can overcome some of these difficulties. In this study, we use anchored hybrid enrichment (AHE) nuclear phylogenomic data and mitochondrial genomes recovered from AHE bycatch with several concatenated and coalescent approaches to reconstruct the poorly resolved radiation of the New Zealand cicada species in the generaKikihiaDugdale andMaoricicadaDugdale. Compared with previous studies using only three to five Sanger‐sequenced genes, we find increased resolution across our phylogenies, but several branches remain unresolved due to topological conflict among genes. Some nodes that are strongly supported by traditional support measures like bootstraps and posterior probabilities still show significant gene and site concordance conflict. In addition, we find strong mito‐nuclear discordance; likely the result of interspecific hybridization events in the evolutionary history ofKikihiaandMaoricicada.more » « less
- 
            Abstract Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia,Sulcia, andOphiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota.more » « less
- 
            Abstract Periodical cicadas (Hemiptera:Magicicada) have coevolved with obligate bacteriome-inhabiting microbial symbionts, yet little is known about gut microbial symbiont composition or differences in composition among allochronicMagicicadabroods (year classes) which emerge parapatrically or allopatrically in the eastern United States. Here, 16S rRNA amplicon sequencing was performed to determine gut bacterial community profiles of three periodical broods, including II (Connecticut and Virginia, 2013), VI (North Carolina, 2017), and X (Maryland, 2021, and an early emerging nymph collected in Ohio, 2017). Results showed similarities among all nymphal gut microbiomes and between morphologically distinct 17-yearMagicicada, namelyMagicicada septendecim(Broods II and VI) and 17-yearMagicicada cassini(Brood X) providing evidence of a core microbiome, distinct from the microbiome of burrow soil inhabited by the nymphs. Generally, phylaBacteroidetes[Bacteroidota] (> 50% relative abundance),Actinobacteria[Actinomycetota], orProteobacteria[Pseudomonadota] represented the core.Acidobacteriaand generaCupriavidus,Mesorhizobium, andDelftiawere prevalent in nymphs but less frequent in adults. The primary obligate endosymbiont,Sulcia(Bacteroidetes), was dominant amongst core genera detected.Chryseobacteriumwere common in Broods VI and X.Chitinophaga, Arthrobacter, andRenibacteriumwere common in Brood X, andPedobacterwere common to nymphs of Broods II and VI. Further taxonomic assignment of unclassifiedAlphaproteobacteriasequencing reads allowed for detection of multiple copies of theHodgkinia16S rRNA gene, distinguishable as separate operational taxonomic units present simultaneously. As major emergences of the broods examined here occur at 17-year intervals, this study will provide a valuable comparative baseline in this era of a changing climate.more » « less
- 
            Abstract Contamination of a genetic sample with DNA from one or more nontarget species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and next-generation sequencing studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on the detection of bimodal distributions of patristic distances across gene trees. When contamination occurs between samples within a data set, a comparison between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a data set generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the anchored hybrid enrichment markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, in part probably due to short length. The cleaned data set, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after the removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution. [Auchenorrhyncha; base-composition bias; Cicadidae; Cicadoidea; Hemiptera; phylogenetic conflict.]more » « less
- 
            Abstract The hemipteran suborder Auchenorrhyncha is a highly diverse, ecologically and agriculturally important group of primarily phytophagous insects which has been a source of phylogenetic contention for many years. Here, we have used transcriptome sequencing to assemble 2139 orthologues from 84 auchenorrhynchan species representing 27 families; this is the largest and most taxonomically comprehensive phylogenetic dataset for this group to date. We used both maximum likelihood and multispecies coalescent analyses to reconstruct the evolutionary history in this group using amino acid, nucleotide, and degeneracy‐coded nucleotide orthologue data. Although many relationships at the superfamily level were consistent between analyses, several differing, highly supported topologies were recovered using different datasets and reconstruction methods, most notably the differential placement of Cercopoidea as sister to either Cicadoidea or Membracoidea. To further interrogate the recovered topologies, we explored the contribution of genes as partitioned by third‐codon‐position guanine‐cytosine (GC) content and heterogeneity. We found consistent support for several relationships, including Cercopoidea + Cicadoidea, most often in genes that would be expected to be enriched for the true species tree if recombination‐based dynamics in GC content have contributed to the observed GC heterogeneity. Our results provide a generally well‐supported framework for future studies of auchenorrhynchan phylogeny and suggest that transcriptome sequencing is likely to be a fruitful source of phylogenetic data for resolving its clades. However, we caution that future work should account for the potential effects of GC content heterogeneity on relationships recovered in this group.more » « less
- 
            Abstract The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginningc. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (PycnaAmyot & Audinet‐Serville,YangaDistant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genusPlatypleurais recovered as polyphyletic, withPlatypleura signiferaWalker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a newPlatypleuraconcept is proposed with the synonymization ofAzanicadaVilletsyn.n.The generaOrapaDistant andHamzaDistant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapinisyn.n. is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.more » « less
- 
            Wallis, Graham; Buckley, Thomas (Ed.)Hybridisation is commonly observed in geographical zones of contact bet ween distinct lineages. These contact zones have long been of interest for biogeographers because they provide insight into the evolutionary and ecological processes that influence the distribution of species as well as the process of speciation. Here we review research on hybrid zones and zones of past introgression, both terrestrial and marine, in Aotearoa New Zealand. Many of New Zealand’s hybrid zones occur between lineages or species that diverged prior to the Last Glacial Maximum (LGM), with numerous divergences dating to the early Pleistocene or Pliocene. Few secondary contact zones have been detected in terrestrial plants and in marine taxa. This may reflect alack of the intensive sampling required to detect hybrid zones in these groups but for plants may also indicate widespread Pleistocene survival across the country. Lastly, we suggest avenues for research into New Zealand hybrid zones that are likely to be fruitful.more » « less
- 
            This paper provides a revised faunal checklist for the subfamilies, tribes, subtribes, genera and species of the family Cicadidae (Insecta: Hemiptera) from Mindanao, Philippines, comprising 31 species belong- ing to 19 genera. A new genus, Neopurana Lee and Marshall gen. nov., and nine new species, Platypleura bella Lee and A. Mohagan sp. nov., Platypleura minima Lee and Marshall sp. nov., Chremistica flavialata Lee and Marshall sp. nov., Oncotympana obesa Lee and Marshall sp. nov., Neopurana bouptera Lee and Marshall sp. nov., Purana mindanaoensis Lee and Marshall sp. nov., Mogannia tenebrosa Lee and Marshall sp. nov., Philipsalta exilis Lee and Marshall sp. nov. and Philipsalta lata Lee and Marshall sp. nov., are described. Platypleura transitiva Lee, 2021 is newly added to the list of cicadas from Mindanao. Male calling songs are illustrated and described for all new species. Information on the geographic distributions of the 31 Mindanao species is provided.more » « less
- 
            The cicada fauna of Western Australia is briefly reviewed. Six genera and 14 species are recorded from the State for the first time bringing the total of known species and subspecies to 105 and a list of all 105 is provided. Among the taxa here recorded are five new genera and 13 new species belonging to the tribes Macrotristriini (Illyria viridis sp. n.), Pictilini (Chrysocicada trophis sp. n.), and Cicadettini (Calipsalta gen. n., Calipsalta brunnea sp. n., C. fumosa sp. n., C. viridans sp. n., Kalarko gen. n., Kalarko ferruginosus sp. n., Ewartia adusta sp. n., Parvopsalta gen. n., Parvopsalta victoriae sp. n., Pedana gen. n., Pedana hesperia sp. n., Pegapsaltria gen. n., Pegapsaltria lutea sp. n., Pyropsalta amnica sp. n., Py. patula sp. n., and Py. rhythmica sp. n). In addition, Erempsalta hermannsburgensis (Distant, 1907) is redescribed and its presence in Western Australia (and four other States) documented for the first time. Songs are analysed for all species except two species of Pyropsalta where recordings were unavailable.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
