skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogenomics of Auchenorrhyncha (Insecta: Hemiptera) using transcriptomes: examining controversial relationships via degeneracy coding and interrogation of gene conflict
Abstract The hemipteran suborder Auchenorrhyncha is a highly diverse, ecologically and agriculturally important group of primarily phytophagous insects which has been a source of phylogenetic contention for many years. Here, we have used transcriptome sequencing to assemble 2139 orthologues from 84 auchenorrhynchan species representing 27 families; this is the largest and most taxonomically comprehensive phylogenetic dataset for this group to date. We used both maximum likelihood and multispecies coalescent analyses to reconstruct the evolutionary history in this group using amino acid, nucleotide, and degeneracy‐coded nucleotide orthologue data. Although many relationships at the superfamily level were consistent between analyses, several differing, highly supported topologies were recovered using different datasets and reconstruction methods, most notably the differential placement of Cercopoidea as sister to either Cicadoidea or Membracoidea. To further interrogate the recovered topologies, we explored the contribution of genes as partitioned by third‐codon‐position guanine‐cytosine (GC) content and heterogeneity. We found consistent support for several relationships, including Cercopoidea + Cicadoidea, most often in genes that would be expected to be enriched for the true species tree if recombination‐based dynamics in GC content have contributed to the observed GC heterogeneity. Our results provide a generally well‐supported framework for future studies of auchenorrhynchan phylogeny and suggest that transcriptome sequencing is likely to be a fruitful source of phylogenetic data for resolving its clades. However, we caution that future work should account for the potential effects of GC content heterogeneity on relationships recovered in this group.  more » « less
Award ID(s):
1655891 1639601
PAR ID:
10458732
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Systematic Entomology
Volume:
45
Issue:
1
ISSN:
0307-6970
Format(s):
Medium: X Size: p. 85-113
Size(s):
p. 85-113
Sponsoring Org:
National Science Foundation
More Like this
  1. Macrhybopsis tetranema and Oncorhynchus gilae are fish species endemic to the Southwestern United States. We present the complete mitochondrial genomes for these species. Each genome consisted of 13 protein-coding genes, two ribosomal (rRNA) genes, 22 transfer RNA (tRNA) genes, and the control region (D-loop). Mitogenome lengths were 16,916 base pairs (bp) for M. tetranema, and 16,976 bp for O. gilae. The GC content was 41% for M. tetranema and 46% for O. gilae. The relationships of M. tetranema and O. gilae were consistent with previous phylogenetic analyses. 
    more » « less
  2. Abstract Background and Aims Cycads are regarded as an ancient lineage of living seed plants, and hold important clues to understand the early evolutionary trends of seed plants. The molecular phylogeny and spatio-temporal diversification of one of the species-rich genera of cycads, Macrozamia, have not been well reconstructed. Methods We analysed a transcriptome dataset of 4740 single-copy nuclear genes (SCGs) of 39 Macrozamia species and two outgroup taxa. Based on concatenated (maximum parsimony, maximum likelihood) and multispecies coalescent analyses, we first establish a well-resolved phylogenetic tree of Macrozamia. To identify cyto-nuclear incongruence, the plastid protein coding genes (PCGs) from transcriptome data are extracted using the software HybPiper. Furthermore, we explore the biogeographical history of the genus and shed light on the pattern of floristic exchange between three distinct areas of Australia. Six key diagnostic characters are traced on the phylogenetic framework using two comparative methods, and infra-generic classification is investigated. Key Results The tree topologies of concatenated and multi-species coalescent analyses of SCGs are mostly congruent with a few conflicting nodes, while those from plastid PCGs show poorly supported relationships. The genus contains three major clades that correspond to their distinct distributional areas in Australia. The crown group of Macrozamia is estimated to around 11.80 Ma, with a major expansion in the last 5–6 Myr. Six morphological characters show homoplasy, and the traditional phenetic sectional division of the genus is inconsistent with this current phylogeny. Conclusions This first detailed phylogenetic investigation of Macrozamia demonstrates promising prospects of SCGs in resolving phylogenetic relationships within cycads. Our study suggests that Macrozamia, once widely distributed in Australia, underwent major extinctions because of fluctuating climatic conditions such as cooling and mesic biome disappearance in the past. The current close placement of morphologically distinct species in the phylogenetic tree may be related to neotenic events that occurred in the genus. 
    more » « less
  3. Abstract Avian feather lice (Phthiraptera: Ischnocera) have undergone morphological diversification into ecomorphs based on how they escape host preening defences. Parrot lice are one prominent example of this phenomenon, with wing, body, or head louse ecomorphs occurring on various groups of parrots. Currently defined genera of parrot lice typically correspond to this ecomorphological variation. Here we explore the phylogenetic relationships among parrot feather lice by sequencing whole genomes and assembling a target set of 2395 nuclear protein coding genes. Phylogenetic trees based on concatenated and coalescent analyses of these data reveal highly supported trees with strong agreement between methods of analysis. These trees reveal that parrot feather lice fall into two separate clades that form a grade with respect to the Brueelia-complex. All parrot louse genera sampled by more than one species were recovered as monophyletic. The evolutionary relationships among these lice showed evidence of strong biogeographic signal, which may also be related to the relationships among their hosts. 
    more » « less
  4. Nucleotide base composition plays an influential role in the molecular mechanisms involved in gene function, phenotype, and amino acid composition. GC content (proportion of guanine and cytosine in DNA sequences) shows a high level of variation within and among species. Many studies measure GC content in a small number of genes, which may not be representative of genome-wide GC variation. One challenge when assembling extensive genomic data sets for these studies is the significant amount of resources (monetary and computational) associated with data processing, and many bioinformatic tools have not been optimized for resource efficiency. Using a high-performance computing (HPC) cluster, we manipulated resources provided to the targeted gene assembly program, automated target restricted assembly method (aTRAM), to determine an optimum way to run the program to maximize resource use. Using our optimum assembly approach, we assembled and measured GC content of all of the protein-coding genes of a diverse group of parasitic feather lice. Of the 499 426 genes assembled across 57 species, feather lice were GC-poor (mean GC = 42.96%) with a significant amount of variation within and between species (GC range = 19.57%-73.33%). We found a significant correlation between GC content and standard deviation per taxon for overall GC and GC3, which could indicate selection for G and C nucleotides in some species. Phylogenetic signal of GC content was detected in both GC and GC3. This research provides a large-scale investigation of GC content in parasitic lice laying the foundation for understanding the basis of variation in base composition across species. 
    more » « less
  5. Abstract The suborder Auchenorrhyncha (“true hoppers”) comprises nearly half of known Hemiptera, with >43,000 known species of sap‐sucking herbivores distributed worldwide, including many important agricultural pests and vectors of plant disease. More than half of the known Auchenorrhyncha belong to superfamily Membracoidea (leaf‐ and treehoppers), which has been a source of phylogenetic contention for many years. To construct an improved backbone phylogeny of this superfamily, we obtained transcriptome data for multiple representatives of all 5 previously established extant families and nearly all subfamilies to test their monophyly and relationships. 138 taxa (132 Membracoidea and 6 outgroups) were sampled with an emphasis on families Cicadellidae and Membracidae, which were paraphyletic as previously defined by most authors, several problematic subfamilies (Aphrodinae, Eurymelinae, Ledrinae, Nicomiinae, Stegaspidinae and Tartessinae). We analysed different combinations of data sets (amino acid, complete nucleotide and degeneracy‐coded nucleotide) using different modelling schemes. The resultant trees based on different analyses are congruent in most nodes. Discordant nodes mainly pertain to relationships among cicadellid subfamilies and tribal relationships within Aphrodinae and Eurymelinae. Analyses of gene‐ and site concordance factors and quartet scores indicate that this instability is largely attributable to an overall lack of informative characters across genes and sites rather than strongly supported conflict among genes. According to the congruent nodes, we make the following revisions: combine Stegaspidinae and Centrotinae into a single subfamily, Centrotinae sensu lato; restore Stenocotini from Tartessinae to its original position in the Ledrinae; and transformHoldgatiellaEvans from Nicomiinae to Melizoderinae. In addition, to solve the paraphyly of both Cicadellidae and Membracidae, a preferred option would be to combine all five previously recognized families into a single family, Membracidae sensu lato; the other option could be to render Cicadellidae monophyletic by excluding Megophthalminae and Ulopinae from Cicadellidae and elevating them to status as separate families. 
    more » « less