Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Balanced graph partitioning is a critical step for many large-scale distributed computations with relational data. As graph datasets have grown in size and density, a range of highly-scalable balanced partitioning algorithms have appeared to meet varied demands across different domains. As the starting point for the present work, we observe that two recently introduced families of iterative partitioners---those based on restreaming and those based on balanced label propagation (including Facebook's Social Hash Partitioner)---can be viewed through a common modular framework of design decisions. With the help of this modular perspective, we find that a key combination of design decisions leads to a novel family of algorithms with notably better empirical performance than any existing highly-scalable algorithm on a broad range of real-world graphs. The resulting prioritized restreaming algorithms employ a constraint management strategy based on multiplicative weights, borrowed from the restreaming literature, while adopting notions of priority from balanced label propagation to optimize the ordering of the streaming process. Our experimental results consider a range of stream orders, where a dynamic ordering based on what we call ambivalence is broadly the most performative in terms of the cut quality of the resulting balanced partitions, with a static ordering based on degree being nearly as good.more » « less
-
Abstract Standard estimators of the global average treatment effect can be biased in the presence of interference. This paper proposes regression adjustment estimators for removing bias due to interference in Bernoulli randomized experiments. We use a fitted model to predict the counterfactual outcomes of global control and global treatment. Our work differs from standard regression adjustments in that the adjustment variables are constructed from functions of the treatment assignment vector, and that we allow the researcher to use a collection of any functions correlated with the response, turning the problem of detecting interference into a feature engineering problem. We characterize the distribution of the proposed estimator in a linear model setting and connect the results to the standard theory of regression adjustments under SUTVA. We then propose an estimator that allows for flexible machine learning estimators to be used for fitting a nonlinear interference functional form. We propose conducting statistical inference via bootstrap and resampling methods, which allow us to sidestep the complicated dependences implied by interference and instead rely on empirical covariance structures. Such variance estimation relies on an exogeneity assumption akin to the standard unconfoundedness assumption invoked in observational studies. In simulation experiments, our methods are better at debiasing estimates than existing inverse propensity weighted estimators based on neighborhood exposure modeling. We use our method to reanalyze an experiment concerning weather insurance adoption conducted on a collection of villages in rural China.more » « less
An official website of the United States government
