In recent years, significant advances have been made in the design and evaluation of balanced (hyper)graph partitioning algorithms. We survey trends of the past decade in practical algorithms for balanced (hyper)graph partitioning together with future research directions. Our work serves as an update to a previous survey on the topic [29]. In particular, the survey extends the previous survey by also covering hypergraph partitioning and has an additional focus on parallel algorithms.
more »
« less
Prioritized Restreaming Algorithms for Balanced Graph Partitioning
Balanced graph partitioning is a critical step for many large-scale distributed computations with relational data. As graph datasets have grown in size and density, a range of highly-scalable balanced partitioning algorithms have appeared to meet varied demands across different domains. As the starting point for the present work, we observe that two recently introduced families of iterative partitioners---those based on restreaming and those based on balanced label propagation (including Facebook's Social Hash Partitioner)---can be viewed through a common modular framework of design decisions. With the help of this modular perspective, we find that a key combination of design decisions leads to a novel family of algorithms with notably better empirical performance than any existing highly-scalable algorithm on a broad range of real-world graphs. The resulting prioritized restreaming algorithms employ a constraint management strategy based on multiplicative weights, borrowed from the restreaming literature, while adopting notions of priority from balanced label propagation to optimize the ordering of the streaming process. Our experimental results consider a range of stream orders, where a dynamic ordering based on what we call ambivalence is broadly the most performative in terms of the cut quality of the resulting balanced partitions, with a static ordering based on degree being nearly as good.
more »
« less
- Award ID(s):
- 1657104
- PAR ID:
- 10186613
- Date Published:
- Journal Name:
- KDD '20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
- Page Range / eLocation ID:
- 1877 to 1887
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mechanoresponsive, soft, photonic materials with tunable structural coloration represent a class of materials that have potential benefits for a wide range of applications. While many lab‐scale fabrication approaches afford control over the nano‐ and microscale morphology of these materials, upscaling their manufacture remains a challenge. Herein, a scalable fabrication concept is proposed that centers on the modular assembly of color‐changing materials from microscale building blocks. The building blocks consist of hydrogel‐based spherical photonic crystals. They are formed through a water‐in‐oil emulsification of nanoscale colloidal particles suspended in the aqueous phase. Once formed, the photonic crystal microspheres are then assembled into macroscale photonic materials, such as stretchable fibers or sheets. The resulting materials respond to a mechanical deformation with a reversible, dynamic change in color. Fabricated via a scalable, modular‐assembly approach, these mechanoresponsive photonic fibers and sheets, in turn, form a valuable building block for sensing systems or visual communication in healthcare, architecture, and consumer product design.more » « less
-
We present an efficient and scalable partitioning method for mapping large-scale neural network models with locally dense and globally sparse connectivity onto reconfigurable neuromorphic hardware. Scalability in computational efficiency, i.e., amount of time spent in actual computation, remains a huge challenge in very large networks. Most partitioning algorithms also struggle to address the scalability in network workloads in finding a globally optimal partition and efficiently mapping onto hardware. As communication is regarded as the most energy and time-consuming part of such distributed processing, the partitioning framework is optimized for compute-balanced, memory-efficient parallel processing targeting low-latency execution and dense synaptic storage, with minimal routing across various compute cores. We demonstrate highly scalable and efficient partitioning for connectivity-aware and hierarchical address-event routing resource-optimized mapping, significantly reducing the total communication volume recursively when compared to random balanced assignment. We showcase our results working on synthetic networks with varying degrees of sparsity factor and fan-out, small-world networks, feed-forward networks, and a hemibrain connectome reconstruction of the fruit-fly brain. The combination of our method and practical results suggest a promising path toward extending to very large-scale networks and scalable hardware-aware partitioning.more » « less
-
Motivated by performance optimization of large-scale graph processing systems that distribute the graph across multiple machines, we consider the balanced graph partitioning problem. Compared to most of the previous work, we study the multi-dimensional variant in which balance according to multiple weight functions is required. As we demonstrate by experimental evaluation, such multi-dimensional balance is essential for achieving performance improvements for typical distributed graph processing workloads. We propose a new scalable technique for the multidimensional balanced graph partitioning problem. It is based on applying randomized projected gradient descent to a non-convex continuous relaxation of the objective. We show how to implement the new algorithm efficiently in both theory and practice utilizing various approaches for the projection step. Experiments with large-scale graphs containing up to hundreds of billions of edges indicate that our algorithm has superior performance compared to the state of the art.more » « less
-
Active learning is a label-efficient approach to train highly effective models while interactively selecting only small subsets of unlabelled data for labelling and training. In "open world" settings, the classes of interest can make up a small fraction of the overall dataset -- most of the data may be viewed as an out-of-distribution or irrelevant class. This leads to extreme class-imbalance, and our theory and methods focus on this core issue. We propose a new strategy for active learning called GALAXY (Graph-based Active Learning At the eXtrEme), which blends ideas from graph-based active learning and deep learning. GALAXY automatically and adaptively selects more class-balanced examples for labeling than most other methods for active learning. Our theory shows that GALAXY performs a refined form of uncertainty sampling that gathers a much more class-balanced dataset than vanilla uncertainty sampling. Experimentally, we demonstrate GALAXY's superiority over existing state-of-art deep active learning algorithms in unbalanced vision classification settings generated from popular datasets.more » « less
An official website of the United States government

