skip to main content


Search for: All records

Award ID contains: 1657204

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Lahiri, Shuvendu K. ; Wang, Chao (Ed.)
    Replication is a common technique to build reliable and scalable systems. Traditional strong consistency maintains the same total order of operations across replicas. This total order is the source of multiple desirable consistency properties: integrity, convergence and recency. However, maintaining the total order has proven to inhibit availability and performance. Weaker notions exhibit responsiveness and scalability; however, they forfeit the total order and hence its favorable properties. This project revives these properties with as little coordination as possible. It presents a tool called 𝐻𝑎𝑚𝑝𝑎 that given a sequential object with the declaration of its integrity and recency requirements, automatically synthesizes a correct-by-construction replicated object that simultaneously guarantees the three properties. It features a relational object specification language and a syntax-directed analysis that infers optimum staleness bounds. Further, it defines coordination-avoidance conditions and the operational semantics of replicated systems that provably guarantees the three properties. It characterizes the computational power and presents a protocol for recency-aware objects. 𝐻𝑎𝑚𝑝𝑎 uses automatic solvers statically and embeds them in the runtime to dynamically decide the validity of coordination-avoidance conditions. The experiments show that recency-aware objects reduce coordination and response time. 
    more » « less
  3. null (Ed.)
    The value of cryptocurrencies is highly volatile and investors require fast and reliable exchange systems. In cross-chain transactions, multiple parties exchange assets across multiple blockchains which can be represented as a directed graph with vertexes V as parties and edges E as asset transfers. In a simple form, cross-chain transactions are cross-chain swaps where each edge e transfers an asset that the head of e already owns. However, in general, a cross-chain transaction includes a sequence of exchanges at each blockchain. Further, transactions may have off-chain steps and hence may not be strongly connected. Given a transaction, protocols are desired that guarantee the following property called uniformity. If all parties conform to the protocol, all the assets should be transferred. Further, if any party deviates from the protocol, the conforming parties should not experience any loss. Previous work introduced a uniform protocol for strongly connected cross-chain swaps and showed that no uniform protocol exists for transactions that are not strongly connected. We present a uniform protocol for general cross-chain transactions with sequenced and off-chain steps when a few certain parties are conforming. Further, we prove a new property called end-to-end that guarantees that if the source parties pay, the sink parties are paid. We present a synthesis tool called XCHAIN that given a high-level description of a cross-transaction can automatically generate smart contracts in Solidity for all the parties. 
    more » « less
  4. null (Ed.)